Non-invasively predicting euploidy in human blastocysts via quantitative 3D morphology measurement: a retrospective cohort study

Scott RT Jr, Ferry K, Su J, Tao X, Scott K, Treff NR. Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study. Fertil Steril. 2012;97:870–5.

Article  PubMed  Google Scholar 

Tiegs AW, Tao X, Zhan Y, Whitehead C, Kim J, Hanson B, Osman E, Kim TJ, Patounakis G, Gutmann J, Castelbaum A. A multicenter, prospective, blinded, nonselection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing–based preimplantation genetic testing for aneuploidy assay and impact of biopsy. Fertil Steril. 2021;115:627–37.

Article  CAS  PubMed  Google Scholar 

Kushnir VA, Frattarelli JL. Aneuploidy in Abortuses following IVF and ICSI. J Assist Reprod Genet. 2009;26:93–7.

Article  PubMed  PubMed Central  Google Scholar 

Kim JW, Lee WS, Yoon TK, Seok HH, Cho JH, Kim YS, Lyu SW, Shim SH. Chromosomal abnormalities in spontaneous abortion after assisted reproductive treatment. BMC Med Genet. 2010;11:1–6.

Article  Google Scholar 

Sciorio R, Dattilo M. PGT-A preimplantation genetic testing for aneuploidies and embryo selection in routine ART cycles: time to step back? Clin Genet. 2020;98:107–15.

Article  CAS  PubMed  Google Scholar 

Rosenwaks Z, Handyside AH, Fiorentino F, Gleicher N, Paulson RJ, Schattman GL, Scott RT, Summers MC, Treff NR, Xu K. The pros and cons of preimplantation genetic testing for aneuploidy: clinical and laboratory perspectives. Fertil Steril. 2018;110:353–61.

Article  PubMed  Google Scholar 

Belandres D, Shamonki M, Arrach N. Current status of spent embryo media research for preimplantation genetic testing. J Assist Reprod Genet. 2019;36:819–26.

Article  PubMed  PubMed Central  Google Scholar 

Cinnioglu C, Glessner H, Jordan A, Bunshaft S. A systematic review of non-invasive preimplantation genetic testing for Aneuploidy. Fertil Steril. 2023;120:235–9.

Article  PubMed  Google Scholar 

Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999;11:307–11.

Article  CAS  PubMed  Google Scholar 

Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

Article  Google Scholar 

Alfarawati S, Fragouli E, Colls P, Stevens J, Gutiérrez-Mateo C, Schoolcraft WB, Katz-Jaffe MG, Wells D. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4.

Article  PubMed  Google Scholar 

Minasi MG, Colasante A, Riccio T, Ruberti A, Casciani V, Scarselli F, Spinella F, Fiorentino F, Varricchio MT, Greco E. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod. 2016;31:2245–54.

Article  PubMed  Google Scholar 

Wang A, Kort J, Behr B, Westphal LM. Euploidy in relation to blastocyst sex and morphology. J Assist Reprod Genet. 2018;35:1565–72.

Article  PubMed  PubMed Central  Google Scholar 

Tunis SR, Clarke M, Gorst SL, Gargon E, Blazeby JM, Altman DG, Williamson PR. Improving the relevance and consistency of outcomes in comparative effectiveness research. J Comp Eff Res. 2016;5:193–205.

Article  PubMed  PubMed Central  Google Scholar 

Fordham DE, Rosentraub D, Polsky AL, Aviram T, Wolf Y, Perl O, Devir A, Rosentraub S, Silver DH, Gold Zamir Y, Bronstein AM. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity? Hum Reprod. 2022;37:2275–90.

Article  PubMed  Google Scholar 

Chawla M, Fakih M, Shunnar A, Bayram A, Hellani A, Perumal V, Divakaran J, Budak E. Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J Assist Reprod Genet. 2015;32:69–75.

Article  PubMed  Google Scholar 

Lee CI, Chen CH, Huang CC, Cheng EH, Chen HH, Ho ST, Lin PY, Lee MS, Lee TH. Embryo morphokinetics is potentially associated with clinical outcomes of single-embryo transfers in preimplantation genetic testing for aneuploidy cycles. Reprod Biomed Online. 2019;39:569–79.

Article  CAS  PubMed  Google Scholar 

Martin A, Rodrigo L, Beltrán D, Meseguer M, Rubio C, Mercader A, de Los Santos MJ. The morphokinetic signature of mosaic embryos: evidence in support of their own genetic identity. Fertil Steril. 2021;116:165–73.

Article  CAS  PubMed  Google Scholar 

Reignier A, Lammers J, Barriere P, Freour T. Can time-lapse parameters predict embryo ploidy? A systematic review. Reprod Biomed Online. 2018;36:380–7.

Article  PubMed  Google Scholar 

Bamford T, Barrie A, Montgomery S, Dhillon-Smith R, Campbell A, Easter C, Coomarasamy A. Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis. Hum Reprod Update. 2022;28:656–86.

Article  PubMed  Google Scholar 

Jiang VS, Bormann CL. Non-invasive genetic screening: current advances in Artificial intelligence for embryo Ploidy Prediction. Fertil Steril. 2023;120:228–34.

Article  PubMed  Google Scholar 

Zhan Q, Sierra ET, Malmsten J, Ye Z, Rosenwaks Z, Zaninovic N. Blastocyst score, a blastocyst quality ranking tool, is a predictor of blastocyst ploidy and implantation potential. FandS Reports. 2020;1:133–41.

Google Scholar 

De Gheselle S, Jacques C, Chambost J, Blank C, Declerck K, De Croo I, Hickman C, Tilleman K. Machine learning for prediction of euploidy in human embryos: in search of the best-performing model and predictive features. Fertil Steril. 2022;117:738–46.

Article  PubMed  Google Scholar 

Zou Y, Pan Y, Ge N, Xu Y, Gu R, Li Z, Fu J, Gao J, Sun X, Sun Y. Can the combination of time-lapse parameters and clinical features predict embryonic ploidy status or implantation? Reprod Biomed Online. 2022;45:643–51.

Article  PubMed  Google Scholar 

Kato K, Ueno S, Berntsen J, Kragh MF, Okimura T, Kuroda T. Does embryo categorization by existing artificial intelligence, morphokinetic or morphological embryo selection models correlate with blastocyst euploidy rates? Reprod Biomed Online. 2023;46:274–81.

Article  CAS  PubMed  Google Scholar 

Bamford T, Easter C, Montgomery S, Smith R, Dhillon-Smith RK, Barrie A, Campbell A, Coomarasamy A. A comparison of 12 machine learning models developed to predict ploidy, using a morphokinetic meta-dataset of 8147 embryos. Hum Reprod. 2023;38:569–81.

Article  PubMed  Google Scholar 

Yuan Z, Yuan M, Song X, Huang X, Yan W. Development of an artificial intelligence based model for predicting the euploidy of blastocysts in PGT-A treatments. Sci Rep. 2023;13:2322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chavez-Badiola A, Flores-Saiffe-Farías A, Mendizabal-Ruiz G, Drakeley AJ, Cohen J. Embryo Ranking Intelligent classification algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod Biomed Online. 2020;41:585–93.

Article  CAS  PubMed  Google Scholar 

Diakiw SM, Hall JM, VerMilyea MD, Amin J, Aizpurua J, Giardini L, Briones YG, Lim AY, Dakka MA, Nguyen TV, Perugini D. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum Reprod. 2022;37:1746–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnes J, Brendel M, Gao VR, Rajendran S, Kim J, Li Q, Malmsten JE, Sierra JT, Zisimopoulos P, Sigaras A, Khosravi P. A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study. Lancet Digit Health. 2023;5:e28-40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danardono GB, Handayani N, Louis CM, Polim AA, Sirait B, Periastiningrum G, Afadlal S, Boediono A, Sini I. Embryo ploidy status classification through computer-assisted morphology assessment. AJOG Global Rep. 2023;3:100209.

Article  Google Scholar 

Lee CI, Su YR, Chen CH, Chang TA, Kuo EE, Zheng WL, Hsieh WT, Huang CC, Lee MS, Liu M. End-to-end deep learning for recognition of ploidy status using time-lapse videos. J Assist Reprod Genet. 2021;38:1655–63.

Article  PubMed 

留言 (0)

沒有登入
gif