Dodds, P. and Rathjen, J., Plant immunity: towards an integrated view of plant–pathogen interactions, Nat. Rev. Genet., 2010, vol. 11, pp. 539—548.https://doi.org/10.1038/nrg2812
Article CAS PubMed Google Scholar
Zou, F., Tan, C., Shinali, T.S., et al., Plant antimicrobial peptides: a comprehensive review of their classification, production, mode of action, functions, applications, and challenges, Food Funct., 2023, vol. 14, no. 12, pp. 5492—5515. https://doi.org/10.1039/d3fo01119d
Article CAS PubMed Google Scholar
Li, J., Hu, S., Jian, W., et al., Plant antimicrobial peptides: structures, functions, and applications, Bot. Stud., 2021, vol. 62, no. 1, p. 5. https://doi.org/10.1186/s40529-021-00312-x
Article CAS PubMed PubMed Central Google Scholar
Tam, J.P., Wang, S., Wong, K.H., and Tan, W.L., Antimicrobial peptides from plants, Pharmaceuticals, 2015, vol. 8, no. 4, pp. 711—757. https://doi.org/10.3390/ph8040711
Article CAS PubMed PubMed Central Google Scholar
Bolouri Moghaddam, M.R., Vilcinskas, A., and Rahnamaeian, M., Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants, Mol. Plant Pathol., 2016, vol. 17, no. 3, pp. 464—471. https://doi.org/10.1111/mpp.12299
Article CAS PubMed Google Scholar
Campos, M.L., de Souza, C.M., de Oliveira, K.B.S., et al., The role of antimicrobial peptides in plant immunity, J. Exp. Bot., 2018, vol. 69, no. 21, pp. 4997—5011. https://doi.org/10.1093/jxb/ery294
Article CAS PubMed Google Scholar
Hu, Z., Zhang, H., and Shi, K., Plant peptides in plant defense responses, Plant Signal. Behav., 2018, vol. 13, no. 8. https://doi.org/10.1080/15592324.2018.1475175
Xie, H., Zhao, W., Li, W., et al., Small signaling peptides mediate plant adaptions to abiotic environmental stress, Planta, 2022, vol. 255, no. 4, p. 72. https://doi.org/10.1007/s00425-022-03859-6
Article CAS PubMed Google Scholar
Marmiroli, N. and Maestri, E., Plant peptides in defense and signaling, Peptides, 2014, vol. 56, pp. 30—44. https://doi.org/10.1016/j.peptides.2014.03.013
Article CAS PubMed Google Scholar
Yamaguchi, K. and Kawasaki, T., Pathogen- and plant-derived peptides trigger plant immunity, Peptides, 2021, vol. 144. https://doi.org/10.1016/j.peptides.2021.170611
Tavormina, P., De Coninck, B., Nikonorova, N., et al., The plant peptidome: an expanding repertoire of structural features and biological functions, Plant Cell, 2015, vol. 27, no. 8, pp. 2095—2118. https://doi.org/10.1105/tpc.15.00440
Article CAS PubMed PubMed Central Google Scholar
Silverstein, K.A., Graham, M.A., Paape, T.D., et al., Genome organization of more than 300 defensin-like genes in Arabidopsis, Plant Physiol., 2005, vol. 138, no. 2, pp. 600—610. https://doi.org/10.1104/pp.105.060079
Article CAS PubMed PubMed Central Google Scholar
Silverstein, K.A., Moskal, W.A., Jr., Wu, H.C., et al., Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants, Plant J., 2007, vol. 51, no. 2, pp. 262—280. https://doi.org/10.1111/j.1365-313X.2007.03136.x
Article CAS PubMed Google Scholar
Korostyleva, T.V., Shiyan, A.N., and Odintsova, T.I., The genetic resource of Thinopyrum elongatum (Host) D.R. Dewey in breeding improvement of wheat, Russ. J. Genet., 2023, vol. 59, no. 10, pp. 983—990. https://doi.org/10.1134/S1022795423100071
Slezina, M.P., Istomina, E.A., Korostyleva, T.V., et al., Molecular insights into the role of cysteine-rich peptides in induced resistance to Fusarium oxysporum infection in tomato based on transcriptome profiling, Int. J. Mol. Sci., 2021, vol. 22, no. 11.https://doi.org/10.3390/ijms22115741
Teufel, F., Almagro Armenteros, J.J., Johansen, A.R., et al., SignalP 6.0 predicts all five types of signal peptides using protein language models, Nat. Biotechnol., 2022, vol. 40, pp. 1023—1025. https://doi.org/10.1038/s41587-021-01156-3
Article CAS PubMed PubMed Central Google Scholar
Gawde, U., Chakraborty, S., Waghu, F.H., et al., CAMPR4: a database of natural and synthetic antimicrobial peptides, Nucleic Acids Res., 2023, vol. 51, pp. D377—D383. https://doi.org/10.1093/nar/gkac933
Article CAS PubMed Google Scholar
Gasteiger, E., Hoogland, C., Gattiker, A., et al., Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook, Walker, J.M., Ed., Humana Press, 2005, pp. 571—607.
Eisenhaber, B., Wildpaner, M., Schultz, C.J., et al., Glycosylphosphatidylinositol lipid anchoring of plant proteins: sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice, Plant Physiol., 2003, vol. 133, pp. 1691—1701. https://doi.org/10.1104/pp.103.023580
Article CAS PubMed PubMed Central Google Scholar
Parisi, K., Shafee, T.M.A., Quimbar, P., et al., The evolution, function and mechanisms of action for plant defensins, Semin. Cell Dev. Biol., 2019, vol. 88, pp. 107—118. https://doi.org/10.1016/j.semcdb.2018.02.004
Article CAS PubMed Google Scholar
Lay, F.T. and Anderson, M.A., Defensins—components of the innate immune system in plants, Curr. Protein Pept. Sci., 2005, vol. 6, no. 1, pp. 85—101. https://doi.org/10.2174/1389203053027575
Article CAS PubMed Google Scholar
Cools, T.L., Struyfs, C., Cammue, B.P., and Thevissen, K., Antifungal plant defensins: increased insight in their mode of action as a basis for their use to combat fungal infections, Future Microbiol., 2017, vol. 12, pp. 441—454. https://doi.org/10.2217/fmb-2016-0181
Article CAS PubMed Google Scholar
Sathoff, A.E. and Samac, D.A., Antibacterial activity of plant defensins, Mol. Plant—Microbe Interact., 2019, vol. 32, no. 5, pp. 507—514. https://doi.org/10.1094/MPMI-08-18-0229-CR
Article CAS PubMed Google Scholar
Mirouze, M., Sels, J., Richard, O., et al., A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance, Plant J., 2006, vol. 47, no. 3, pp. 329—342. https://doi.org/10.1111/j.1365-313X.2006.02788.x
Article CAS PubMed Google Scholar
Sasaki, K., Kuwabara, C., Umeki, N., et al., The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat, J. Biotechnol., 2016, vol. 228, pp. 3—7. https://doi.org/10.1016/j.jbiotec.2016.04.015
Article CAS PubMed Google Scholar
Stotz, H.U., Spence, B., and Wang, Y., A defensin from tomato with dual function in defense and development, Plant Mol. Biol., 2009, vol. 71, nos. 1—2, pp. 131—143. https://doi.org/10.1007/s11103-009-9512-z
Article CAS PubMed Google Scholar
Odintsova, T.I., Slezina, M.P., Istomina, E.A., et al., Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: a focus on structural diversity and role in induced resistance, Peer J., 2019, vol. 7. https://doi.org/10.7717/peerj.6125
Slezina, M.P., Istomina, E.A., Kulakovskaya, E.V., et al., The γ-core motif peptides of AMPs from grasses display inhibitory activity against human and plant pathogens, Int. J. Mol. Sci., 2022, vol. 23, no. 15. https://doi.org/10.3390/ijms23158383
Segura, A., Moreno, M., Madueño, F., et al., Snakin-1, a peptide from potato that is active against plant pathogens, Mol. Plant—Microbe Interact., 1999, vol. 12, no. 1, pp. 16—23. https://doi.org/10.1094/MPMI.1999.12.1.16
Article CAS PubMed Google Scholar
Nahirñak, V., Almasia, N.I., Fernandez, P.V., et al., Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition, Plant Physiol., 2012, vol. 158, no. 1, pp. 252—263. https://doi.org/10.1104/pp.111.186544
Article CAS PubMed Google Scholar
Zhang, S., Yang, C., Peng, J., et al., GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana, Plant Mol. Biol., 2009, vol. 69, pp. 745—759. https://doi.org/10.1007/s11103-009-9452-7
Article CAS PubMed Google Scholar
Oliveira-Lima, M., Benko-Iseppon, A.M., Neto, J.R.C.F., et al., Snakin: structure, roles and applications of a plant antimicrobial peptide, Curr. Protein Pept. Sci., 2017, vol. 18, no. 4, pp. 368—374. https://doi.org/10.2174/1389203717666160619183140
留言 (0)