Septins as key players in spermatogenesis, fertilisation and pre-implantation embryogenic cytoplasmic dynamics

Abdulsamad HMR, Murtaza ZF, AlMuhairi HM, Bafleh WS, AlMansoori SA, AlQubaisi SA, Hamdan H, Kashir J. The therapeutic and diagnostic potential of phospholipase c zeta, oocyte activation, and calcium in treating human infertility. Pharmaceuticals. 2023;16(3):441 https://www.mdpi.com/1424-8247/16/3/441.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal A, Farkouh A, Parekh N, Zini A, Arafa M, Kandil H, Tadros N, Busetto GM, Ambar R, Parekattil S, Boitrelle F, Sallam H, Jindal S, Ko E, Simopoulou M, Park HJ, Sadighi MA, Saleh R, Ramsay J, Shah R. Sperm DNA fragmentation: a critical assessment of clinical practice guidelines. World J Mens Health. 2022;40(1):30–7. https://doi.org/10.5534/wjmh.210056.

Article  PubMed  Google Scholar 

Ajduk A, Ilozue T, Windsor S, Yu Y, Seres KB, Bomphrey RJ, Tom BD, Swann K, Thomas A, Graham C, Zernicka-Goetz M. Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat Commun. 2011;2:417. https://doi.org/10.1038/ncomms1424.

Article  CAS  PubMed  Google Scholar 

Akhmetova KA, Chesnokov IN, Fedorova SA. Functional characterization of septin complexes. Mol Biol (Mosk). 2018;52(2):155–71. https://doi.org/10.7868/s0026898418020015.

Article  CAS  PubMed  Google Scholar 

Benoit B, Baillet A, Poüs C. Cytoskeleton and associated proteins: pleiotropic JNK substrates and regulators. Int J Mol Sci. 2021;22(16):8375. https://doi.org/10.3390/ijms22168375.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benoit B, Poüs C, Baillet A. Septins as membrane influencers: direct play or in association with other cytoskeleton partners. Front Cell Dev Biol. 2023;11:1112319. https://doi.org/10.3389/fcell.2023.1112319.

Article  PubMed  PubMed Central  Google Scholar 

Bertin A, McMurray MA, Pierson J, Thai L, McDonald KL, Zehr EA, García G 3rd, Peters P, Thorner J, Nogales E. Three-dimensional ultrastructure of the septin filament network in Saccharomyces cerevisiae. Mol Biol Cell. 2012;23(3):423–32. https://doi.org/10.1091/mbc.E11-10-0850.

Article  PubMed  PubMed Central  Google Scholar 

Camprubí C, Pladevall M, Grossmann M, Garrido N, Pons MC, Blanco J. Semen samples showing an increased rate of spermatozoa with imprinting errors have a negligible effect in the outcome of assisted reproduction techniques. Epigenetics. 2012;7(10):1115–24. https://doi.org/10.4161/epi.21743.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capalbo A, Poli M, Rienzi L, Girardi L, Patassini C, Fabiani M, Cimadomo D, Benini F, Farcomeni A, Cuzzi J, Rubio C, Albani E, Sacchi L, Vaiarelli A, Figliuzzi M, Findikli N, Coban O, Boynukalin FK, Vogel I, Simón C. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial. Am J Hum Genet. 2021;108(12):2238–47. https://doi.org/10.1016/j.ajhg.2021.11.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cavini IA, Leonardo DA, Rosa HVD, Castro DKSV, D’Muniz Pereira H, Valadares NF, Araujo APU, Garratt RC. The Structural Biology of Septins and Their Filaments: An Update [Review]. Front Cell Dev Biol. 2021;9:765085.https://doi.org/10.3389/fcell.2021.765085

Article  PubMed  PubMed Central  Google Scholar 

Chen H, Li P, Du X, Zhao Y, Wang L, Tian Y, Song X, Shuai L, Bai X, Chen L. Homozygous loss of Septin12, but not its haploinsufficiency, leads to male infertility and fertilization failure. Front Cell Dev Biol. 2022;10:850052. https://doi.org/10.3389/fcell.2022.850052.

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Ouyang Y-C, Li J, Qiao J-Y, Gu L-J, Wang Z-B, Hou Y, Schatten H, Sun Q-Y. Septin 4 controls CCNB1 stabilization via APC/CCDC20 during meiotic G2/M transition in mouse oocytes. J Cell Physiol. 2022;237(1):730–42. https://doi.org/10.1002/jcp.30498.

Article  CAS  PubMed  Google Scholar 

Chen L, Ouyang YC, Gu LJ, Guo JN, Han ZM, Wang ZB, Hou Y, Schatten H, Sun QY. Septin 9 controls CCNB1 stabilization via APC/C(CDC20) during meiotic metaphase I/anaphase I transition in mouse oocytes. Cell Prolif. 2023;56(2): e13359. https://doi.org/10.1111/cpr.13359.

Article  CAS  PubMed  Google Scholar 

Chen S-R, Batool A, Wang Y-Q, Hao X-X, Chang C-S, Cheng CY, Liu Y-X. The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon’s head to tail. Cell Death Dis. 2016;7(11):e2472–e2472. https://doi.org/10.1038/cddis.2016.344.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chih B, Liu P, Chinn Y, Chalouni C, Komuves LG, Hass PE, Sandoval W, Peterson AS. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol. 2011;14(1):61–72. https://doi.org/10.1038/ncb2410.

Article  CAS  PubMed  Google Scholar 

Cruz M, Gadea B, Garrido N, Pedersen KS, Martínez M, Pérez-Cano I, Muñoz M, Meseguer M. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet. 2011;28(7):569–73. https://doi.org/10.1007/s10815-011-9549-1.

Article  PubMed  PubMed Central  Google Scholar 

de Souza LB, Ong HL, Liu X, Ambudkar IS. PIP2 and septin control STIM1/Orai1 assembly by regulating cytoskeletal remodeling via a CDC42-WASP/WAVE-ARP2/3 protein complex. Cell Calcium. 2021;99: 102475. https://doi.org/10.1016/j.ceca.2021.102475.

Article  CAS  PubMed  Google Scholar 

Deb BK, Hasan G. Regulation of store-operated Ca2+ entry by septins [Perspective]. Front Cell Dev Biol. 2016;4:142. https://doi.org/10.3389/fcell.2016.00142.

Article  PubMed  PubMed Central  Google Scholar 

Deb BK, Pathak T, Hasan G. Store-independent modulation of Ca2+ entry through Orai by Septin 7. Nat Commun. 2016;7(1): 11751.

Article  PubMed  PubMed Central  Google Scholar 

Dolat L, Hu Q, Spiliotis ET. Septin functions in organ system physiology and pathology. Biol Chem. 2014;395(2):123–41. https://doi.org/10.1515/hsz-2013-0233.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ducibella T, Fissore R. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol. 2008;315(2):257–79. https://doi.org/10.1016/j.ydbio.2007.12.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux S, Ozil J-P. Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol. 2002;250(2):280–91. https://doi.org/10.1006/dbio.2002.0788.

Article  CAS  PubMed  Google Scholar 

Ducibella T, Schultz R, Ozil J. Role of calcium signals in early development. Semin Cell Dev Biol. 2006;17(2):324–32. https://doi.org/10.1016/j.semcdb.2006.02.010.

Article  CAS  PubMed  Google Scholar 

Duncan FE, Que EL, Zhang N, Feinberg EC, O’Halloran TV, Woodruff TK. The zinc spark is an inorganic signature of human egg activation. Sci Rep. 2016;6(1): 24737. https://doi.org/10.1038/srep24737.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrer-Vaquer A, Barragán M, Rodríguez A, Vassena R. Altered cytoplasmic maturation in rescued in vitro matured oocytes. Hum Reprod. 2019;34(6):1095–105. https://doi.org/10.1093/humrep/dez052.

Article  CAS  PubMed  Google Scholar 

FitzHarris G, Marangos P, Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol. 2007;305(1):133–44. https://doi.org/10.1016/j.ydbio.2007.02.006.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif