MicroRNAs in fluorosis pathogenesis: impact on dental, skeletal, and soft tissues

Abbasoglu Z, Dalledone M, Wambier LM et al (2020) Single nucleotide polymorphism rs4284505 in microRNA17 and risk of dental fluorosis. Acta Odontol Scand 78:463–466. https://doi.org/10.1080/00016357.2020.1786600

Article  CAS  PubMed  Google Scholar 

Ameeramja J, Perumal E (2017) Pulmonary fluorosis: a review. Environ Sci Pollut Res 24:22119–22132. https://doi.org/10.1007/s11356-017-9951-z

Article  CAS  Google Scholar 

Avnet S, Pallotta R, Perut F, et al (2011) Osteoblasts from a mandibuloacral dysplasia patient induce human blood precursors to differentiate into active osteoclasts. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease 1812:711–718. https://doi.org/10.1016/j.bbadis.2011.03.006

Bronckers ALJJ, Lyaruu DM, Denbesten PK (2009) The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dental Res 88(10):877–893. https://doi.org/10.1177/0022034509343280

Article  CAS  Google Scholar 

Burk U, Schubert J, Wellner U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589. https://doi.org/10.1038/embor.2008.74

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao H, Jheon A, Li X et al (2013) The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation. Development 140:3348–3359. https://doi.org/10.1242/dev.089193

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caruso P, Dunmore BJ, Schlosser K et al (2017) Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and pyruvate kinase M2. Circulation 136:2451–2467. https://doi.org/10.1161/CIRCULATIONAHA.117.028034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho JG, Leite AL, Yan D et al (2009) Influence of genetic background on fluoride metabolism in mice. J Dent Res 88:1054–1058. https://doi.org/10.1177/0022034509347249

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chai L, Cao Q, Liu K et al (2024) Exercise alleviates fluoride-induced learning and memory impairment in mice: role of miR-206–3p and PREG. Biol Trace Elem Res. https://doi.org/10.1007/s12011-024-04068-w

Article  PubMed  Google Scholar 

Chen P, Guo X, Zhang L, et al (2016) MiR-200c is a cMyc-activated miRNA that promotes nasopharyngeal carcinoma by downregulating PTEN. Oncotarget 8:5206–5218. https://doi.org/10.18632/oncotarget.14123

Chen J, Luo Y, Cao J, Xie L (2021a) Fluoride exposure changed the expression of microRNAs in gills of male zebrafish (Danio rerio). Aquat Toxicol 233:105789. https://doi.org/10.1016/j.aquatox.2021.105789

Article  CAS  PubMed  Google Scholar 

Chen Q, Li Z, Xu Z et al (2021b) miR-378d is involved in the regulation of apoptosis and autophagy of and E2 secretion from cultured ovarian granular cells treated by sodium fluoride. Biol Trace Elem Res 199:4119–4128. https://doi.org/10.1007/S12011-020-02524-x

Article  CAS  PubMed  Google Scholar 

Chen T, Gu Y, Bai GH et al (2023) MiR-1a-3p inhibits apoptosis in fluoride-exposed LS8 cells by targeting Map3k1. Biol Trace Elem Res 202:2720–2729. https://doi.org/10.1007/S12011-023-03869-9

Article  PubMed  PubMed Central  Google Scholar 

Daiwile AP, Sivanesan S, Izzotti A et al (2015) Noncoding RNAs: possible players in the development of fluorosis. Biomed Res Int. https://doi.org/10.1155/2015/274852

Article  PubMed  PubMed Central  Google Scholar 

Deng Q, Yang J, Zhouyang J et al (2022) Preliminary screening of fluorine-stained osteoblastic apoptosis-related microRNA. Anat Rec 305:359–372. https://doi.org/10.1002/ar.24709

Article  CAS  Google Scholar 

Ge QD, Xie C, Zhang H et al (2019) Differential expression of miRNAs in the hippocampi of offspring rats exposed to fluorine combined with aluminum during the embryonic stage and into adulthood. Biol Trace Elem Res 189:463–477. https://doi.org/10.1007/s12011-018-1445-4

Article  CAS  PubMed  Google Scholar 

Doherty TM, Fitzpatrick LA, Inoue D et al (2004) Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 25:629–672. https://doi.org/10.1210/er.2003-0015

Article  CAS  PubMed  Google Scholar 

Dwivedi S, Purohit P, Sharma P (2019) MicroRNAs and diseases: promising biomarkers for diagnosis and therapeutics. Indian J Clin Biochem 34:243–245. https://doi.org/10.1007/S12291-019-00844-x

Article  PubMed  PubMed Central  Google Scholar 

Ekambaram P, Paul V (2001) Calcium preventing locomotor behavioral and dental toxicities of fluoride by decreasing serum fluoride level in rats. Environ Toxicol Pharmacol 9:141–146. https://doi.org/10.1016/S1382-6689(00)00063-6

Article  CAS  PubMed  Google Scholar 

Ekambaram P, Paul V (2002) Modulation of fluoride toxicity in rats by calcium carbonate and by withdrawal of fluoride exposure. Pharmacol Toxicol 90:53–58. https://doi.org/10.1034/j.1600-0773.2002.900201.x

Article  CAS  PubMed  Google Scholar 

Ekambaram P, Namitha T, Bhuvaneswari S et al (2010) Therapeutic efficacy of Tamarindus indica (L) to protect against fluoride-induced oxidative stress in the liver of female rats. Fluoride 43:134

CAS  Google Scholar 

Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560. https://doi.org/10.1177/0022034510384626

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fawell J, Bailey K, Chilton J, Dahi E, Magara Y (2006) Fluoride in drinking-water. IWA, London

Google Scholar 

Gao J, Qin Y, Luo K et al (2020) Downregulation of miR-4755-5p promotes fluoride-induced osteoblast activation via tageting Cyclin D1. J Trace Elem Med Biol 62:126626. https://doi.org/10.1016/j.jtemb.2020.126626

Article  CAS  PubMed  Google Scholar 

Guo N, Yu Y, Chu Y et al (2022) miR-21-5p and canonical Wnt signaling pathway promote osteoblast function through a feed-forward loop induced by fluoride. Toxicology 466:153079. https://doi.org/10.1016/j.tox.2021.153079

Article  CAS  PubMed  Google Scholar 

Hassan MQ, Gordon JAR, Beloti MM et al (2010) A network connecting Runx2, SATB2, and the miR-23a∼27a∼24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA 107:19879–19884. https://doi.org/10.1073/pnas.1007698107

Article  PubMed  PubMed Central  Google Scholar 

Huang W, Wu L, Qin M, et al (2024) Analysis of miRNA and mRNA transcription profiles changes in the hippocampus of fluorosis rats. https://doi.org/10.21203/rs.3.rs-3858572/v1

Iwata T, Morotome Y, Tanabe T et al (2002) Noggin blocks osteoinductive activity of porcine enamel extracts. J Dent Res 81:387–391. https://doi.org/10.1177/0810387

Article  CAS  PubMed  Google Scholar 

Jiang Y, Yang Y, Wang H et al (2018) Identification of miR-200c-3p as a major regulator of SaoS2 cells activation induced by fluoride. Chemosphere 199:694–701. https://doi.org/10.1016/j.chemosphere.2018.01.095

Article  CAS  PubMed  Google Scholar 

Jiang Y, Yang Y, Zhang C et al (2020) Upregulation of miR-200c-3p induced by NaF promotes endothelial apoptosis by activating Fas pathway. Environ Pollut 266:115089. https://doi.org/10.1016/j.envpol.2020.115089

Article  CAS  PubMed  Google Scholar 

Jones DH, Kong YY, Penninger JM (2002) Role of RANKL and RANK in bone loss and arthritis. Ann Rheum Dis 61:ii32–ii39. https://doi.org/10.1136/ard.61.suppl_2.ii32

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kierdorf U, Richards A, Sedlacek F, Kierdorf H (1997) Fluoride content and mineralization of red deer (Cervus elaphus) antlers and pedicles from fluoride polluted and uncontaminated regions. Arch Environ Contam Toxicol 32:222–227. https://doi.org/10.1007/s002449900179

留言 (0)

沒有登入
gif