Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer

Bodmer, J. L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).

Article  CAS  PubMed  Google Scholar 

Croft, M., Benedict, C. A. & Ware, C. F. Clinical targeting of the TNF and TNFR superfamilies. Nat. Rev. Drug Discov. 12, 147–168 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Croft, M. & Siegel, R. M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 217–233 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhusia, K., Su, Z. & Wu, Y. Computational analyses of the interactome between TNF and TNFR superfamilies. Comput. Biol. Chem. 103, 107823 (2023).

Article  CAS  PubMed  Google Scholar 

Jeucken, K. C. M., Koning, J. J., Mebius, R. E. & Tas, S. W. The role of endothelial cells and TNF-receptor superfamily members in lymphoid organogenesis and function during health and inflammation. Front. Immunol. 10, 2700 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruddle, N. H. & Akirav, E. M. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J. Immunol. 183, 2205–2212 (2009).

Article  CAS  PubMed  Google Scholar 

Ward-Kavanagh, L. K., Lin, W. W., Sedy, J. R. & Ware, C. F. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 44, 1005–1019 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho, J. H. & Feldman, M. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat. Med. 21, 730–738 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiryluk, K. et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat. Genet. 55, 1091–1105 (2023).

Article  CAS  PubMed  Google Scholar 

Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 82, 3–18 (2023).

Article  CAS  PubMed  Google Scholar 

Fischer, R., Kontermann, R. E. & Pfizenmaier, K. Selective targeting of TNF receptors as a novel therapeutic approach. Front. Cell Dev. Biol. 8, 401 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Siegmund, D. & Wajant, H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat. Rev. Rheumatol. 19, 576–591 (2023).

Article  CAS  PubMed  Google Scholar 

Lo, C. H. et al. Noncompetitive inhibitors of TNFR1 probe conformational activation states. Sci. Signal. 12, eaav5637 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Weinelt, N. et al. Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-κB signaling. J. Leukoc. Biol. 109, 363–371 (2021).

Article  CAS  PubMed  Google Scholar 

Inoue, M. et al. Bivalent structure of a TNFR2-selective and agonistic TNF-α mutein Fc-fusion protein enhances the expansion activity of regulatory T cells. Sci. Rep. 13, 13762 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vargas, J. G. et al. A TNFR2-specific TNF fusion protein with improved in vivo activity. Front. Immunol. 13, 888274 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peters, A. L., Stunz, L. L. & Bishop, G. A. CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21, 293–300 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Law, C. L. & Grewal, I. S. Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv. Exp. Med. Biol. 647, 8–36 (2009).

Article  CAS  PubMed  Google Scholar 

Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48, 719–727 (2003).

Article  CAS  PubMed  Google Scholar 

Kalunian, K. C. et al. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 3251–3258 (2002).

Article  CAS  PubMed  Google Scholar 

Kuwana, M. et al. Effect of a single injection of humanized anti-CD154 monoclonal antibody on the platelet-specific autoimmune response in patients with immune thrombocytopenic purpura. Blood 103, 1229–1236 (2004).

Article  CAS  PubMed  Google Scholar 

Karnell, J. L. et al. A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity. Sci. Transl. Med. 11, eaar6584 (2019).

Article  PubMed  Google Scholar 

Kivitz, A. et al. The MIDORA trial: a phase II, randomised, double-blind, placebo-controlled, mechanistic insight and dosage optimisation study of the efficacy and safety of dazodalibep in patients with rheumatoid arthritis. RMD Open 9, e003317 (2023).

Article  PubMed  PubMed Central  Google Scholar 

St Clair, E. W. et al. Abstr. OP0143. Efficacy and safety of dazodalibep in subjects with Sjogren’s syndrome: a phase 2, randomized, double-blind, placebo-controlled, proof of concept study. Ann. Rheum. Dis. 82 (Suppl. 1), 95 (2023).

Google Scholar 

Chamberlain, C. et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann. Rheum. Dis. 76, 1837–1844 (2017).

Article  CAS  PubMed  Google Scholar 

Furie, R. A. et al. Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology 60, 5397–5407 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eledon. Press Release. Eledon.com https://ir.eledon.com/news-releases/news-release-details/eledon-announces-positivetopline-results-phase-2a-trial (2022).

Espie, P. et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am. J. Transpl. 20, 463–473 (2020).

Article  CAS  Google Scholar 

Kahaly, G. J. et al. A novel anti-CD40 monoclonal antibody, iscalimab, for control of graves hyperthyroidism-a proof-of-concept trial. J. Clin. Endocrinol. Metab. 105, dgz013 (2020).

Article  PubMed  Google Scholar 

Faustino, L. C. et al. Precision medicine in graves’ disease: CD40 gene variants predict clinical response to an anti-CD40 monoclonal antibody. Front. Endocrinol. 12, 691781 (2021).

Article  Google Scholar 

Novartis. Press Release. novartis.com https://www.novartis.com/news/novartis-announces-discontinuation-cirrus-1-studycfz533-iscalimab-kidney-transplant-patients (2021).

Fierce. Press Release. fiercebiotech.com https://www.fiercebiotech.com/biotech/novartis-stops-liver-transplant-program-after-10.1038/s41573-024-01053-9astellas-drug-beats-its-cd40-prospect-phase-2 (2022).

Anil Kumar, M. S. et al. Randomized, controlled study of bleselumab (ASKP1240) pharmacokinetics and safety in patients with moderate-to-severe plaque psoriasis. Biopharm. Drug Dispos. 39, 245–255 (2018).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif