Bodmer, J. L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).
Article CAS PubMed Google Scholar
Croft, M., Benedict, C. A. & Ware, C. F. Clinical targeting of the TNF and TNFR superfamilies. Nat. Rev. Drug Discov. 12, 147–168 (2013).
Article CAS PubMed PubMed Central Google Scholar
Croft, M. & Siegel, R. M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 217–233 (2017).
Article CAS PubMed PubMed Central Google Scholar
Dhusia, K., Su, Z. & Wu, Y. Computational analyses of the interactome between TNF and TNFR superfamilies. Comput. Biol. Chem. 103, 107823 (2023).
Article CAS PubMed Google Scholar
Jeucken, K. C. M., Koning, J. J., Mebius, R. E. & Tas, S. W. The role of endothelial cells and TNF-receptor superfamily members in lymphoid organogenesis and function during health and inflammation. Front. Immunol. 10, 2700 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ruddle, N. H. & Akirav, E. M. Secondary lymphoid organs: responding to genetic and environmental cues in ontogeny and the immune response. J. Immunol. 183, 2205–2212 (2009).
Article CAS PubMed Google Scholar
Ward-Kavanagh, L. K., Lin, W. W., Sedy, J. R. & Ware, C. F. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 44, 1005–1019 (2016).
Article CAS PubMed PubMed Central Google Scholar
Cho, J. H. & Feldman, M. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat. Med. 21, 730–738 (2015).
Article CAS PubMed PubMed Central Google Scholar
Kiryluk, K. et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat. Genet. 55, 1091–1105 (2023).
Article CAS PubMed Google Scholar
Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 82, 3–18 (2023).
Article CAS PubMed Google Scholar
Fischer, R., Kontermann, R. E. & Pfizenmaier, K. Selective targeting of TNF receptors as a novel therapeutic approach. Front. Cell Dev. Biol. 8, 401 (2020).
Article PubMed PubMed Central Google Scholar
Siegmund, D. & Wajant, H. TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond. Nat. Rev. Rheumatol. 19, 576–591 (2023).
Article CAS PubMed Google Scholar
Lo, C. H. et al. Noncompetitive inhibitors of TNFR1 probe conformational activation states. Sci. Signal. 12, eaav5637 (2019).
Article PubMed PubMed Central Google Scholar
Weinelt, N. et al. Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-κB signaling. J. Leukoc. Biol. 109, 363–371 (2021).
Article CAS PubMed Google Scholar
Inoue, M. et al. Bivalent structure of a TNFR2-selective and agonistic TNF-α mutein Fc-fusion protein enhances the expansion activity of regulatory T cells. Sci. Rep. 13, 13762 (2023).
Article CAS PubMed PubMed Central Google Scholar
Vargas, J. G. et al. A TNFR2-specific TNF fusion protein with improved in vivo activity. Front. Immunol. 13, 888274 (2022).
Article CAS PubMed PubMed Central Google Scholar
Peters, A. L., Stunz, L. L. & Bishop, G. A. CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21, 293–300 (2009).
Article CAS PubMed PubMed Central Google Scholar
Law, C. L. & Grewal, I. S. Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. Adv. Exp. Med. Biol. 647, 8–36 (2009).
Article CAS PubMed Google Scholar
Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48, 719–727 (2003).
Article CAS PubMed Google Scholar
Kalunian, K. C. et al. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 3251–3258 (2002).
Article CAS PubMed Google Scholar
Kuwana, M. et al. Effect of a single injection of humanized anti-CD154 monoclonal antibody on the platelet-specific autoimmune response in patients with immune thrombocytopenic purpura. Blood 103, 1229–1236 (2004).
Article CAS PubMed Google Scholar
Karnell, J. L. et al. A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity. Sci. Transl. Med. 11, eaar6584 (2019).
Kivitz, A. et al. The MIDORA trial: a phase II, randomised, double-blind, placebo-controlled, mechanistic insight and dosage optimisation study of the efficacy and safety of dazodalibep in patients with rheumatoid arthritis. RMD Open 9, e003317 (2023).
Article PubMed PubMed Central Google Scholar
St Clair, E. W. et al. Abstr. OP0143. Efficacy and safety of dazodalibep in subjects with Sjogren’s syndrome: a phase 2, randomized, double-blind, placebo-controlled, proof of concept study. Ann. Rheum. Dis. 82 (Suppl. 1), 95 (2023).
Chamberlain, C. et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann. Rheum. Dis. 76, 1837–1844 (2017).
Article CAS PubMed Google Scholar
Furie, R. A. et al. Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology 60, 5397–5407 (2021).
Article CAS PubMed PubMed Central Google Scholar
Eledon. Press Release. Eledon.com https://ir.eledon.com/news-releases/news-release-details/eledon-announces-positivetopline-results-phase-2a-trial (2022).
Espie, P. et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am. J. Transpl. 20, 463–473 (2020).
Kahaly, G. J. et al. A novel anti-CD40 monoclonal antibody, iscalimab, for control of graves hyperthyroidism-a proof-of-concept trial. J. Clin. Endocrinol. Metab. 105, dgz013 (2020).
Faustino, L. C. et al. Precision medicine in graves’ disease: CD40 gene variants predict clinical response to an anti-CD40 monoclonal antibody. Front. Endocrinol. 12, 691781 (2021).
Novartis. Press Release. novartis.com https://www.novartis.com/news/novartis-announces-discontinuation-cirrus-1-studycfz533-iscalimab-kidney-transplant-patients (2021).
Fierce. Press Release. fiercebiotech.com https://www.fiercebiotech.com/biotech/novartis-stops-liver-transplant-program-after-10.1038/s41573-024-01053-9astellas-drug-beats-its-cd40-prospect-phase-2 (2022).
Anil Kumar, M. S. et al. Randomized, controlled study of bleselumab (ASKP1240) pharmacokinetics and safety in patients with moderate-to-severe plaque psoriasis. Biopharm. Drug Dispos. 39, 245–255 (2018).
留言 (0)