Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol. 2019;7(1):3–23.
Article CAS PubMed PubMed Central Google Scholar
Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, et al. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: a comprehensive review of literature. Int J Nanomed. 2021;16:7891–941.
Mayrovitz HN e. Breast Cancer. Publications BAE, editor. https://www.ncbi.nlm.nih.gov/books/NBK583818/. https://doi.org/10.36255/exon-publications-breast-cancer. Accessed 6 Aug 2022.
Singh SK, Singh S, Lillard Jr JW, Singh R. Drug delivery approaches for breast cancer. Int J Nanomed. 2017:6205–18
Tran P, Lee S-E, Kim D-H, Pyo Y-C, Park J-S. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Investig. 2020;50:261–70.
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789.
Article CAS PubMed PubMed Central Google Scholar
Alves RC, Fernandes RP, Eloy JO, Salgado HRN, Chorilli M. Characteristics, properties and analytical methods of paclitaxel: a review. Crit Rev Anal Chem. 2018;48(2):110–8.
Article CAS PubMed Google Scholar
Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis. 2022;27(9):647–67.
Article CAS PubMed Google Scholar
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother. 2021;141: 111824.
Article CAS PubMed Google Scholar
Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417.
Article PubMed PubMed Central Google Scholar
Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nat Rev Drug Discovery. 2010;9(6):447–64.
Article CAS PubMed Google Scholar
Bock FJ, Tait SW. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100.
Article CAS PubMed Google Scholar
Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharmaceutica Sinica B. 2018;8(6):862–80.
Article PubMed PubMed Central Google Scholar
Wang Z, Guo W, Kuang X, Hou S, Liu H. Nanopreparations for mitochondria targeting drug delivery system: current strategies and future prospective. Asian J Pharm Sci. 2017;12(6):498–508.
Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta (BBA)-Rev Cancer. 2019;1871(2):419–33.
Yadav S, Sharma AK, Kumar P. Nanoscale self-assembly for therapeutic delivery. Front Bioeng Biotechnol. 2020;8:127.
Article PubMed PubMed Central Google Scholar
Yuan J, Guo L, Wang S, Liu D, Qin X, Zheng L, et al. Preparation of self-assembled nanoparticles of ε-polylysine-sodium alginate: a sustained-release carrier for antigen delivery. Colloids Surf, B. 2018;171:406–12.
Zhang P, Zhao S, Yu Y, Wang H, Yang Y, Liu C. Biocompatibility profile and in vitro cellular uptake of self-assembled alginate nanoparticles. Molecules. 2019;24(3):555.
Article PubMed PubMed Central Google Scholar
Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Adv Coll Interface Sci. 2014;209:163–71.
Amani S, Mohamadnia Z, Ahmadi E, Mahdavi A, Kermanian M. Self-assembled polyelectrolyte complex nanoparticles as a potential carrier in protein delivery systems. J Drug Deliv Sci Technol. 2019;54: 101250.
Author, Mohammadi A, Atyabi F, Ebrahimi SM, Shahmoradi E, Amini M, et al. Enhancement mitochondrial apoptosis in breast cancer cells by paclitaxel-triphenylphosphonium conjugate in DNA aptamer modified nanoparticles. J Drug Deliv Sci Technol. 2019;54:101228.
Fasehee H, Author, Ghavamzadeh A, Author, Moradian H, Faghihi S, et al. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. J Nanobiotechnol. 2016;14:1–18.
Ansari MA, Thiruvengadam M, Farooqui Z, Rajakumar G, Jamal QMS, Alzohairy MA, et al. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: prospects for the therapeutic management of breast cancer. Sem Cancer Biol; 2021:Elsevier.
Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4(2):1000164.
Article PubMed PubMed Central Google Scholar
Martínez-Relimpio AM, Benito M, Pérez-Izquierdo E, Teijón C, Olmo RM, Blanco MD. Paclitaxel-loaded folate-targeted albumin-alginate nanoparticles crosslinked with ethylenediamine. Synthesis and in vitro characterization. Polymers. 2021;13(13):2083.
Article PubMed PubMed Central Google Scholar
Niculescu A-G, Grumezescu AM. Applications of chitosan-alginate-based nanoparticles—an up-to-date review. Nanomaterials. 2022;12(2):186.
Article CAS PubMed PubMed Central Google Scholar
Van Bavel N, Lewrenz A-M, Issler T, Pang L, Anikovskiy M, Prenner EJ. Synthesis of alginate nanoparticles using hydrolyzed and enzyme-digested alginate using the ionic gelation and water-in-oil emulsion method. Polymers. 2023;15(5):1319.
Article PubMed PubMed Central Google Scholar
Chen W-H, Chen J-X, Cheng H, Chen C-S, Yang J, Xu X-D, et al. A new anti-cancer strategy of damaging mitochondria by pro-apoptotic peptide functionalized gold nanoparticles. Chem Commun. 2013;49(57):6403–5.
Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta (BBA)-Bioenerget. 2008;1777(7–8):1028–31.
留言 (0)