Transforming cancer detection and treatment with nanoflowers

Liang X, Tang Y, Kurboniyon MS, Luo D, Tu G, Xia P, et al. PdMo nanoflowers for endogenous/exogenous-stimulated nanocatalytic therapy. Front Pharmacol. 2023;14:1324764.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, et al. Experimental mouse models for translational human cancer research. Front Immunol. 2023;14:1095388.

Article  CAS  PubMed  PubMed Central  Google Scholar 

World Health O. Global cancer burden growing, amidst mounting need for services. 2024.

Chen Z, Wang W, Abdul Razak SR, Han T, Ahmad NH, Li X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis. 2023;14(7):460. https://doi.org/10.1038/s41419-023-05930-w.

Article  PubMed  PubMed Central  Google Scholar 

Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer. 2023;22(1):160.

Article  PubMed  PubMed Central  Google Scholar 

Pavelić K, Pavelić SK, Bulog A, Agaj A, Rojnić B, Čolić M, et al. Nanoparticles in medicine: current status in cancer treatment. Int J Mol Sci. 2023;24(16):12827.

Article  PubMed  PubMed Central  Google Scholar 

Hong L, Li W, Li Y, Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv. 2023;13(31):21365–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan X, Xie D, Zhang R, Li X, Sun J, Qian C, et al. A novel robotic bronchoscope system for navigation and biopsy of pulmonary lesions. Cyborg Bion Syst (Washington, DC). 2023;4:0013. https://doi.org/10.34133/cbsystems.0013.

Article  CAS  Google Scholar 

Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22(1):169.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Xu Y, Zhai W, Zhang Z, Liu Y, Cheng S, et al. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat Commun. 2022;13(1):5056. https://doi.org/10.1038/s41467-022-32804-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He X, Jiang Z, Akakuru OU, Li J, Wu A. Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chem Commun. 2021;57(93):12417–35. https://doi.org/10.1039/D1CC04846E.

Article  CAS  Google Scholar 

Zhao C, Tang X, Chen X, Jiang Z. Multifaceted carbonized metal-organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy. ACS Nano. 2024;18(27):17852–68. https://doi.org/10.1021/acsnano.4c04022.

Article  CAS  PubMed  Google Scholar 

Khakbiz M, Shakibania S, Ghazanfari L, Zhao S, Tavakoli M, Chen Z. Engineered nanoflowers, nanotrees, nanostars, nanodendrites, and nanoleaves for biomedical applications. Nanotechnol Rev. 2023;12(1):20220523.

Article  CAS  Google Scholar 

Liu K, Jiang Z, Lalancette RA, Tang X, Jäkle F. Near-Infrared-absorbing B-N lewis pair-functionalized anthracenes: electronic structure tuning, conformational isomerism, and applications in photothermal cancer therapy. J Am Chem Soc. 2022;144(41):18908–17. https://doi.org/10.1021/jacs.2c06538.

Article  CAS  PubMed  Google Scholar 

Ramamoorthy S, Reji RP, Jayaraman SV, Sundaramurthy A. Fabrication of BiCuOS nanoflowers acting as nanoarrays on photonic nanoparticles for chemo-photothermal therapy. Appl Surf Sci. 2023;640: 158360.

Article  CAS  Google Scholar 

Lee SJ, Jang H, Lee DN. Inorganic nanoflowers—synthetic strategies and physicochemical properties for biomedical applications: a review. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14091887.

Article  PubMed  PubMed Central  Google Scholar 

Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. Nanoscale Advances. 2023;5(19):5165–213. https://doi.org/10.1039/D3NA00163F.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dadi S, Celik C, Ocsoy I. Gallic acid nanoflower immobilized membrane with peroxidase-like activity for m-cresol detection. Sci Rep. 2020;10(1):16765. https://doi.org/10.1038/s41598-020-73778-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan L, Li H, Zhang Y. Synthesis of hybrid nanoflower-based carbonic anhydrase for enhanced biocatalytic activity and stability. ACS Omega. 2018;3(12):18234–41. https://doi.org/10.1021/acsomega.8b02247.

Article  CAS  Google Scholar 

Tiss B, Martínez-Martínez D, Silva B, Bouguila N, El Mir L, Almeida B, et al. Growth of Al:ZnO nano-flowers by pulsed laser ablation deposition. Opt Laser Technol. 2024;174: 110673. https://doi.org/10.1016/j.optlastec.2024.110673.

Article  CAS  Google Scholar 

Zhao X, Wang C-S, Chou N-N, Wang F-H, Yang C-F. Synthesis of ZnO nanoflower arrays on patterned cavity substrate and their application in methylene blue degradation. Materials. 2023. https://doi.org/10.3390/ma16072647.

Article  PubMed  PubMed Central  Google Scholar 

Lee C-Y, Wang C-S, Wang F-H, Liu H-W, Yang C-F. Investigations of a statistical and analytical method to find the relationship between the morphological and optical properties of ZnO nanoflower arrays. ACS Omega. 2022;7(20):17384–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao Q, Xu F, Sun L, Zhu Y, Fang S, Liao L, et al. Fabrication of nanoflower-like Ni2Co-S/CNTA with morphology controlled for high-performance supercapacitor. J Alloy Compd. 2024;976: 173249.

Article  CAS  Google Scholar 

Eadi SB, Kim S, Jeong SW. Effect of surfactant on growth of ZnO nanodumbbells and their characterization. J Chem. 2017;2017:1728345.

Article  Google Scholar 

Zhang H, Chen W-G, Li Y-Q, Jin L-F, Cui F, Song Z-H. 3D flower-like NiO hierarchical structures assembled with size-controllable 1D blocking units: gas sensing performances towards acetylene. Front Chem. 2018;6:472.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Cong L, Wang J, Wang X, Liu G, Yu W, et al. Impact of CTAB on morphology and electrochemical performance of MoS 2 nanoflowers with improved lithium storage properties. J Mater Sci: Mater Electron. 2018;29:3631–9.

CAS  Google Scholar 

Lambora S, Bhardwaj A. Morphology transition with temperature and its effect on optical properties of colloidal MoS2 nanostructures. ACS Omega. 2023;8(30):27725–31. https://doi.org/10.1021/acsomega.3c03478.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen W, Guo X, Pang H. Effect of solvothermal temperature on morphology and supercapacitor performance of Ni-MOF. Molecules. 2022. https://doi.org/10.3390/molecules27238226.

Article  PubMed  PubMed Central  Google Scholar 

Kumar N, Siroha P, Shankar H, Singh D, Sharma Y, Kumar R, et al. Probing into crystallography and morphology properties of MoS2 nanoflowers synthesized via temperature dependent hydrothermal method. Nano Express. 2022;3(3): 035001.

Article  CAS  Google Scholar 

Kulkarni SK, Kulkarni SK. Synthesis of nanomaterials—II (Chemical methods). Nanotechnology: principles and practices. 2015:77–109.

Xie J, Zhang Q, Lee JY, Wang DIC. The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano. 2008;2(12):2473–80. https://doi.org/10.1021/nn800442q.

Article  CAS  PubMed  Google Scholar 

Ekennia AC, Uduagwu DN, Nwaji NN, Oje OO, Emma-Uba CO, Mgbii SI, et al. Green synthesis of biogenic zinc oxide nanoflower as dual agent for photodegradation of an organic dye and tyrosinase inhibitor. J Inorg Organomet Polym Mater. 2021;31(2):886–97.

留言 (0)

沒有登入
gif