Liang X, Tang Y, Kurboniyon MS, Luo D, Tu G, Xia P, et al. PdMo nanoflowers for endogenous/exogenous-stimulated nanocatalytic therapy. Front Pharmacol. 2023;14:1324764.
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, et al. Experimental mouse models for translational human cancer research. Front Immunol. 2023;14:1095388.
Article CAS PubMed PubMed Central Google Scholar
World Health O. Global cancer burden growing, amidst mounting need for services. 2024.
Chen Z, Wang W, Abdul Razak SR, Han T, Ahmad NH, Li X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis. 2023;14(7):460. https://doi.org/10.1038/s41419-023-05930-w.
Article PubMed PubMed Central Google Scholar
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer. 2023;22(1):160.
Article PubMed PubMed Central Google Scholar
Pavelić K, Pavelić SK, Bulog A, Agaj A, Rojnić B, Čolić M, et al. Nanoparticles in medicine: current status in cancer treatment. Int J Mol Sci. 2023;24(16):12827.
Article PubMed PubMed Central Google Scholar
Hong L, Li W, Li Y, Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv. 2023;13(31):21365–82.
Article CAS PubMed PubMed Central Google Scholar
Duan X, Xie D, Zhang R, Li X, Sun J, Qian C, et al. A novel robotic bronchoscope system for navigation and biopsy of pulmonary lesions. Cyborg Bion Syst (Washington, DC). 2023;4:0013. https://doi.org/10.34133/cbsystems.0013.
Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22(1):169.
Article PubMed PubMed Central Google Scholar
Wang Y, Xu Y, Zhai W, Zhang Z, Liu Y, Cheng S, et al. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat Commun. 2022;13(1):5056. https://doi.org/10.1038/s41467-022-32804-0.
Article CAS PubMed PubMed Central Google Scholar
He X, Jiang Z, Akakuru OU, Li J, Wu A. Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chem Commun. 2021;57(93):12417–35. https://doi.org/10.1039/D1CC04846E.
Zhao C, Tang X, Chen X, Jiang Z. Multifaceted carbonized metal-organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy. ACS Nano. 2024;18(27):17852–68. https://doi.org/10.1021/acsnano.4c04022.
Article CAS PubMed Google Scholar
Khakbiz M, Shakibania S, Ghazanfari L, Zhao S, Tavakoli M, Chen Z. Engineered nanoflowers, nanotrees, nanostars, nanodendrites, and nanoleaves for biomedical applications. Nanotechnol Rev. 2023;12(1):20220523.
Liu K, Jiang Z, Lalancette RA, Tang X, Jäkle F. Near-Infrared-absorbing B-N lewis pair-functionalized anthracenes: electronic structure tuning, conformational isomerism, and applications in photothermal cancer therapy. J Am Chem Soc. 2022;144(41):18908–17. https://doi.org/10.1021/jacs.2c06538.
Article CAS PubMed Google Scholar
Ramamoorthy S, Reji RP, Jayaraman SV, Sundaramurthy A. Fabrication of BiCuOS nanoflowers acting as nanoarrays on photonic nanoparticles for chemo-photothermal therapy. Appl Surf Sci. 2023;640: 158360.
Lee SJ, Jang H, Lee DN. Inorganic nanoflowers—synthetic strategies and physicochemical properties for biomedical applications: a review. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14091887.
Article PubMed PubMed Central Google Scholar
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. Nanoscale Advances. 2023;5(19):5165–213. https://doi.org/10.1039/D3NA00163F.
Article CAS PubMed PubMed Central Google Scholar
Dadi S, Celik C, Ocsoy I. Gallic acid nanoflower immobilized membrane with peroxidase-like activity for m-cresol detection. Sci Rep. 2020;10(1):16765. https://doi.org/10.1038/s41598-020-73778-7.
Article CAS PubMed PubMed Central Google Scholar
Duan L, Li H, Zhang Y. Synthesis of hybrid nanoflower-based carbonic anhydrase for enhanced biocatalytic activity and stability. ACS Omega. 2018;3(12):18234–41. https://doi.org/10.1021/acsomega.8b02247.
Tiss B, Martínez-Martínez D, Silva B, Bouguila N, El Mir L, Almeida B, et al. Growth of Al:ZnO nano-flowers by pulsed laser ablation deposition. Opt Laser Technol. 2024;174: 110673. https://doi.org/10.1016/j.optlastec.2024.110673.
Zhao X, Wang C-S, Chou N-N, Wang F-H, Yang C-F. Synthesis of ZnO nanoflower arrays on patterned cavity substrate and their application in methylene blue degradation. Materials. 2023. https://doi.org/10.3390/ma16072647.
Article PubMed PubMed Central Google Scholar
Lee C-Y, Wang C-S, Wang F-H, Liu H-W, Yang C-F. Investigations of a statistical and analytical method to find the relationship between the morphological and optical properties of ZnO nanoflower arrays. ACS Omega. 2022;7(20):17384–92.
Article CAS PubMed PubMed Central Google Scholar
Shao Q, Xu F, Sun L, Zhu Y, Fang S, Liao L, et al. Fabrication of nanoflower-like Ni2Co-S/CNTA with morphology controlled for high-performance supercapacitor. J Alloy Compd. 2024;976: 173249.
Eadi SB, Kim S, Jeong SW. Effect of surfactant on growth of ZnO nanodumbbells and their characterization. J Chem. 2017;2017:1728345.
Zhang H, Chen W-G, Li Y-Q, Jin L-F, Cui F, Song Z-H. 3D flower-like NiO hierarchical structures assembled with size-controllable 1D blocking units: gas sensing performances towards acetylene. Front Chem. 2018;6:472.
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Cong L, Wang J, Wang X, Liu G, Yu W, et al. Impact of CTAB on morphology and electrochemical performance of MoS 2 nanoflowers with improved lithium storage properties. J Mater Sci: Mater Electron. 2018;29:3631–9.
Lambora S, Bhardwaj A. Morphology transition with temperature and its effect on optical properties of colloidal MoS2 nanostructures. ACS Omega. 2023;8(30):27725–31. https://doi.org/10.1021/acsomega.3c03478.
Article CAS PubMed PubMed Central Google Scholar
Shen W, Guo X, Pang H. Effect of solvothermal temperature on morphology and supercapacitor performance of Ni-MOF. Molecules. 2022. https://doi.org/10.3390/molecules27238226.
Article PubMed PubMed Central Google Scholar
Kumar N, Siroha P, Shankar H, Singh D, Sharma Y, Kumar R, et al. Probing into crystallography and morphology properties of MoS2 nanoflowers synthesized via temperature dependent hydrothermal method. Nano Express. 2022;3(3): 035001.
Kulkarni SK, Kulkarni SK. Synthesis of nanomaterials—II (Chemical methods). Nanotechnology: principles and practices. 2015:77–109.
Xie J, Zhang Q, Lee JY, Wang DIC. The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano. 2008;2(12):2473–80. https://doi.org/10.1021/nn800442q.
Article CAS PubMed Google Scholar
Ekennia AC, Uduagwu DN, Nwaji NN, Oje OO, Emma-Uba CO, Mgbii SI, et al. Green synthesis of biogenic zinc oxide nanoflower as dual agent for photodegradation of an organic dye and tyrosinase inhibitor. J Inorg Organomet Polym Mater. 2021;31(2):886–97.
留言 (0)