From TCR fundamental research to innovative chimeric antigen receptor design

Dong, D. et al. Structural basis of assembly of the human T cell receptor–CD3 complex. Nature 573, 546–552 (2019).

Article  CAS  PubMed  Google Scholar 

Chen, Y. et al. Cholesterol inhibits TCR signaling by directly restricting TCR–CD3 core tunnel motility. Mol. Cell 82, 1278–1287.e5 (2022).

Article  CAS  PubMed  Google Scholar 

Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

Article  CAS  PubMed  Google Scholar 

Love, P. E. & Hayes, S. M. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Persp. Biol. 2, a002485 (2010).

Google Scholar 

Pitcher, L. A. & van Oers, N. S. C. T-cell receptor signal transmission: who gives an ITAM? Trends Immunol. 24, 554–560 (2003).

Article  CAS  PubMed  Google Scholar 

Letourneur, F. & Klausner, R. D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor ζ family proteins. Proc. Natl Acad. Sci. USA 88, 8905–8909 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

Article  CAS  PubMed  Google Scholar 

Romeo, C. & Seed, B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64, 1037–1046 (1991).

Article  CAS  PubMed  Google Scholar 

Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

Article  PubMed  Google Scholar 

Majzner, R. G. et al. GD2–CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, J., Huang, X. & Huang, J. CAR-T cell therapy for hematological malignancies: limitations and optimization strategies. Front. Immunol. 13, 1019115 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

Article  CAS  PubMed  Google Scholar 

Swamy, M. et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44, 1091–1101 (2016).

Article  CAS  PubMed  Google Scholar 

Courtney, A. H., Lo, W. L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

Article  CAS  PubMed  Google Scholar 

Aivazian, D. & Stern, L. J. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

Article  CAS  PubMed  Google Scholar 

Zhang, H., Cordoba, S.-P., Dushek, O. & van der Merwe, P. A. Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl Acad. Sci. USA 108, 19323–19328 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L. et al. Ionic CD3–Lck interaction regulates the initiation of T-cell receptor signaling. Proc. Natl Acad. Sci. USA 114, E5891–E5899 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Wu, W. et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell 182, 855–871.e23 (2020).

Article  CAS  PubMed  Google Scholar 

von Essen, M. et al. The CD3 γ leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation. J. Immunol. 168, 4519–4523 (2002).

Article  Google Scholar 

Janeway, C. A. Ligands for the T-cell receptor: hard times for avidity models. Immunol. Today 16, 223–225 (1995).

Article  CAS  PubMed  Google Scholar 

Lever, M., Maini, P. K., van der Merwe, P. A. & Dushek, O. Phenotypic models of T cell activation. Nat. Rev. Immunol. 14, 619–629 (2014).

Article  CAS  PubMed  Google Scholar 

Schamel, W. W., Alarcon, B. & Minguet, S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol. Rev. 291, 8–25 (2019).

Article  CAS  PubMed  Google Scholar 

Minguet, S., Swamy, M., Alarcón, B., Luescher, I. F. & Schamel, W. W. A. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

Article  CAS  PubMed  Google Scholar 

Cochran, J. R., Cameron, T. O. & Stern, L. J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250 (2000).

Article  CAS  PubMed  Google Scholar 

Boniface, J. J. et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity 9, 459–466 (1998).

Article  CAS  PubMed  Google Scholar 

Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

Article  CAS  PubMed  Google Scholar 

Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

Article  CAS  PubMed  Google Scholar 

Cordoba, S.-P. et al. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121, 4295–4302 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung, Y., Wen, L., Altman, A. & Ley, K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat. Commun. 12, 3872 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acuto, O. T-cell virtuosity in “knowing thyself”. Front. Immunol. 15, 1343575 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartl, F. A. et al. Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nat. Immunol. 21, 902–913 (2020).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif