Translation of pathophysiological mechanisms of atrial fibrosis into new diagnostic and therapeutic approaches

Li, Z. et al. Atrial cardiomyopathy markers and new-onset atrial fibrillation risk in patients with acute myocardial infarction. Eur. J. Intern. Med. 102, 72–79 (2022).

Article  CAS  Google Scholar 

Li, M. et al. Atrial cardiomyopathy: from cell to bedside. Esc. Heart Fail. 9, 3768–3784 (2022).

Article  PubMed Central  Google Scholar 

Miyauchi, S. et al. Relationship between fibrosis, endocardial endothelial damage, and thrombosis of left atrial appendage in atrial fibrillation. JACC Clin. Electrophysiol. 9, 1158–1168 (2023).

Article  Google Scholar 

Nattel, S. Atrial fibrosis, endocardial damage, and thrombosis in atrial fibrillation: association with underlying conditions or causal? JACC Clin. Electrophysiol. 9, 1169–1171 (2023).

Article  Google Scholar 

Kamel, H. et al. The atrial cardiopathy and antithrombotic drugs in prevention after cryptogenic stroke randomized trial: rationale and methods. Int. J. Stroke 14, 207–214 (2019).

Article  Google Scholar 

Goette, A. et al. Atrial cardiomyopathy revisited – evolution of a concept. A clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Association (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace, https://doi.org/10.1093/europace/euae204 (2024).

Article  PubMed Central  Google Scholar 

Goette, A. et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace 18, 1455–1490 (2016).

Article  PubMed Central  Google Scholar 

Schotten, U., Verheule, S., Kirchhof, P. & Goette, A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 91, 265–325 (2011).

Article  Google Scholar 

Nattel, S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin. Electrophysiol. 3, 425–435 (2017).

Article  Google Scholar 

Nattel, S. & Dobrev, D. Controversies about atrial fibrillation mechanisms: aiming for order in chaos and whether it matters. Circ. Res. 120, 1396–1398 (2017).

Article  CAS  Google Scholar 

Heijman, J., Linz, D. & Schotten, U. Dynamics of atrial fibrillation mechanisms and comorbidities. Annu. Rev. Physiol. 83, 83–106 (2021).

Article  CAS  Google Scholar 

Weber, K. T., Pick, R., Jalil, J. E., Janicki, J. S. & Carroll, E. P. Patterns of myocardial fibrosis. J. Mol. Cell Cardiol. 21, 121–131 (1989).

Article  Google Scholar 

Verheule, S. & Schotten, U. Electrophysiological consequences of cardiac fibrosis. Cells 10, 3220 (2021).

Article  PubMed Central  Google Scholar 

Maesen, B. et al. Endomysial fibrosis, rather than overall connective tissue content, is the main determinant of conduction disturbances in human atrial fibrillation. Europace 24, 1015–1024 (2022).

Article  PubMed Central  Google Scholar 

Winters, J. et al. Heart failure, female sex, and atrial fibrillation are the main drivers of human atrial cardiomyopathy: results from the CATCH ME consortium. J. Am. Heart Assoc. 12, e031220 (2023).

Article  CAS  PubMed Central  Google Scholar 

Fabritz, L. et al. Dynamic risk assessment to improve quality of care in patients with atrial fibrillation: the 7th AFNET/EHRA consensus conference. Europace 23, 329–344 (2021).

Article  Google Scholar 

Rohr, S. Arrhythmogenic implications of fibroblast–myocyte interactions. Circ. Arrhythm. Electrophysiol. 5, 442–452 (2012).

Article  Google Scholar 

Weber, K. T., Sun, Y., Bhattacharya, S. K., Ahokas, R. A. & Gerling, I. C. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 10, 15–26 (2013).

Article  CAS  Google Scholar 

Cardin, S. et al. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc. Res. 60, 315–325 (2003).

Article  CAS  Google Scholar 

Westerman, S. & Wenger, N. Gender differences in atrial fibrillation: a review of epidemiology, management, and outcomes. Curr. Cardiol. Rev. 15, 136–144 (2019).

Article  PubMed Central  Google Scholar 

Verheule, S. et al. Fibrillatory conduction in the atrial free walls of goats in persistent and permanent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 3, 590–599 (2010).

Article  Google Scholar 

Verheule, S. et al. Loss of continuity in the thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduction. Circ. Arrhythm. Electrophysiol. 6, 202–211 (2013).

Article  Google Scholar 

Ravelli, F. et al. Quantitative assessment of transmural fibrosis profile in the human atrium: evidence for a three-dimensional arrhythmic substrate by slice-to-slice histology. Europace 25, 739–747 (2023).

Article  Google Scholar 

Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100, 87–95 (1999).

Article  CAS  Google Scholar 

Platonov, P. G., Mitrofanova, L. B., Orshanskaya, V. & Ho, S. Y. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J. Am. Coll. Cardiol. 58, 2225–2232 (2011).

Article  Google Scholar 

van Brakel, T. J. et al. Fibrosis and electrophysiological characteristics of the atrial appendage in patients with atrial fibrillation and structural heart disease. J. Interv. Card. Electrophysiol. 38, 85–93 (2013).

Article  Google Scholar 

Chen, J. et al. Extent and spatial distribution of left atrial arrhythmogenic sites, late gadolinium enhancement at magnetic resonance imaging, and low-voltage areas in patients with persistent atrial fibrillation: comparison of imaging vs. electrical parameters of fibrosis and arrhythmogenesis. Europace 21, 1484–1493 (2019).

Article  Google Scholar 

Cochet, H. et al. Age, atrial fibrillation, and structural heart disease are the main determinants of left atrial fibrosis detected by delayed-enhanced magnetic resonance imaging in a general cardiology population. J. Cardiovasc. Electrophysiol. 26, 484–492 (2015).

Article  Google Scholar 

Benito, E. M. et al. Preferential regional distribution of atrial fibrosis in posterior wall around left inferior pulmonary vein as identified by late gadolinium enhancement cardiac magnetic resonance in patients with atrial fibrillation. Europace 20, 1959–1965 (2018).

Article  Google Scholar 

Nattel, S., Heijman, J., Zhou, L. & Dobrev, D. Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective. Circ. Res. 127, 51–72 (2020).

Article  CAS  PubMed Central  Google Scholar 

Takawale, A., Aguilar, M., Bouchrit, Y. & Hiram, R. Mechanisms and management of thyroid disease and atrial fibrillation: impact of atrial electrical remodeling and cardiac fibrosis. Cells 11, 4047 (2022).

Article  CAS  PubMed Central  Google Scholar 

Harada, M. & Nattel, S. Implications of inflammation and fibrosis in atrial fibrillation pathophysiology. Card. Electrophysiol. Clin. 13, 25–35 (2021).

Article  Google Scholar 

Gawalko, M. et al. Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovasc. Res. 119, 614–630 (2023).

Article  CAS  Google Scholar 

Kato, T. et al. Endothelial-mesenchymal transition in human atrial fibrillation. J. Cardiol. 69, 706–711 (2017).

Article  Google Scholar 

Lai, Y. J. et al. miR-181b targets semaphorin 3A to mediate TGF-β-induced endothelial-mesenchymal transition related to atrial fibrillation. J. Clin. Invest. 132, e142548 (2022).

Article  CAS  PubMed Central  Google Scholar 

Simon, J. N., Ziberna, K. & Casadei, B. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation. Cardiovasc. Res. 109, 510–518 (2016).

Article  CAS  PubMed Central  Google Scholar 

Yue, L., Xie, J. & Nattel, S. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc. Res. 89, 744–753 (2011).

Article  CAS  Google Scholar 

Qiu, H. et al. Salvianolate reduces atrial fibrillation through suppressing atrial interstitial fibrosis by inhibiting TGF-β1/Smad2/3 and TXNIP/NLRP3 inflammasome signaling pathways in post-MI rats. Phytomedicine 51, 255–265 (2018).

Article  CAS  Google Scholar 

Chen, Y. et al. JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate. Cardiovasc. Res. 113, 310–320 (2017).

Article  CAS 

留言 (0)

沒有登入
gif