β-Sitosterol Mitigates Apoptosis, Oxidative Stress and Inflammatory Response by Inactivating TLR4/NF-кB Pathway in Cell Models of Diabetic Nephropathy

Xiong, Y., & Zhou, L. (2019). The signaling of cellular senescence in diabetic nephropathy. Oxidative Medicine and Cellular Longevity, 2019, 7495629.

Article  PubMed  PubMed Central  Google Scholar 

Dwyer, J. P., Parving, H. H., Hunsicker, L. G., Ravid, M., Remuzzi, G., & Lewis, J. B. (2012). Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: Results from the DEMAND study. Cardiorenal Medicine, 2(1), 1–10.

Article  CAS  PubMed  Google Scholar 

Samsu, N. (2021). Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Research International, 2021, 1497449.

Article  PubMed  PubMed Central  Google Scholar 

Riedmann, H., Kayser, S., Helmstädter, M., Epting, D., & Bergmann, C. (2023). Kif21a deficiency leads to impaired glomerular filtration barrier function. Scientific Reports, 13(1), 19161.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing, Y. W., & Liu, K. Z. (2021). Azithromycin inhibited oxidative stress and apoptosis of high glucose-induced podocytes by inhibiting STAT1 pathway. Drug Development Research, 82(7), 990–998.

CAS  Google Scholar 

Babu, S., & Jayaraman, S. (2020). An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacotherapy, 131, 110702.

Article  CAS  Google Scholar 

Leng, Y., Sun, Y., Lv, C., Li, Z., Yuan, C., & Zhang, J., et al. (2021). Characterization of β-Sitosterol for Potential Selective GR Modulation. Protein and Peptide Letters, 28(3), 276–281.

Article  CAS  PubMed  Google Scholar 

Sun, Y., Gao, L., Hou, W., & Wu, J. (2020). β-sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF-κB pathways in LPS-exposed BV2 cells. BioMed Research International, 2020, 7532306.

PubMed  PubMed Central  Google Scholar 

Kim, K. A., Lee, I. A., Gu, W., Hyam, S. R., & Kim, D. H. (2014). β-Sitosterol attenuates high-fat diet-induced intestinal inflammation in mice by inhibiting the binding of lipopolysaccharide to toll-like receptor 4 in the NF-κB pathway. Molecular Nutrition & Food Research, 58(5), 963–972.

Article  CAS  Google Scholar 

Gupta, R., Sharma, A. K., Dobhal, M. P., Sharma, M. C., & Gupta, R. S. (2011). Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. Journal of Diabetes, 3(1), 29–37.

Article  CAS  PubMed  Google Scholar 

Ding, S., Wang, W., Song, X., & Ma, H. (2021). Based on network pharmacology and molecular docking to explore the underlying mechanism of Huangqi Gegen decoction for treating diabetic nephropathy. Evidence-Based Complementary and Alternative Medicine: eCAM., 2021, 9928282.

Article  PubMed  Google Scholar 

Fu, S., Zhou, Y., Hu, C., Xu, Z., & Hou, J. (2022). Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy. BMC Complementary Medicine and Therapies, 22(1), 210.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, Y., Zhao, J., Chang, S., Zhuang, Z., Waimei, S., & Li, X., et al. (2023). β-sitosterol alleviates neuropathic pain by affect microglia polarization through inhibiting TLR4/NF-κB signaling pathway. Journal of Neuroimmune Pharmacology, 18(4), 690–703.

Article  PubMed  Google Scholar 

Zhu, L., Han, J., Yuan, R., Xue, L., & Pang, W. (2018). Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biological Research, 51(1), 9.

Article  PubMed  PubMed Central  Google Scholar 

Wang, F., Liu, C., Ren, L., Li, Y., Yang, H., & Yu, Y., et al. (2023). Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway. Pharmaceutical Biology, 61(1), 427–436.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu, D., Song, S., Chen, N., Bian, Y., Yuan, C., & Zhang, W., et al. (2023). NQO1 alleviates renal fibrosis by inhibiting the TLR4/NF-κB and TGF-β/Smad signaling pathways in diabetic nephropathy. Cellular Signalling, 108, 110712.

Article  CAS  PubMed  Google Scholar 

Chen, X., Zhao, L., Xing, Y., & Lin, B. (2018). Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomedicine & Pharmacotherapy, 108, 7–14.

Article  CAS  Google Scholar 

Mima, A., Yasuzawa, T., Nakamura, T., & Ueshima, S. (2020). Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Scientific Reports, 10(1), 5775.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue, W., Mao, J., Chen, Q., Ling, W., & Sun, Y. (2020). Mogroside IIIE alleviates high glucose-induced inflammation, oxidative stress and apoptosis of podocytes by the activation of AMPK/SIRT1 signaling pathway. Diabetes, Metabolic Syndrome and Obesity, 13, 3821–3830.

Article  PubMed  PubMed Central  Google Scholar 

Wang, Y., Zhu, X., Yuan, S., Wen, S., Liu, X., & Wang, C., et al. (2019). TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Frontiers in Endocrinology, 10, 603.

Article  PubMed  PubMed Central  Google Scholar 

Chen, L., Wang, Y., Luan, H., Ma, G., Zhang, H., & Chen, G. (2020). DUSP6 protects murine podocytes from high glucose‑induced inflammation and apoptosis. Molecular Medicine Reports, 22(3), 2273–2282.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winiarska, A., Knysak, M., Nabrdalik, K., Gumprecht, J., & Stompór, T. (2021). Inflammation and oxidative stress in diabetic kidney disease: The targets for SGLT2 inhibitors and GLP-1 receptor agonists. International Journal of Molecular Sciences, 22(19), 10822.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meza Letelier, C. E., San Martín Ojeda, C. A., Ruiz Provoste, J. J., & Frugone Zaror, C. J. (2017). [Pathophysiology of diabetic nephropathy: A literature review]. Medwave, 17(1), e6839.

Article  PubMed  Google Scholar 

Xue, H., Li, P., Luo, Y., Wu, C., Liu, Y., & Qin, X., et al. (2019). Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice. Phytomedicine, 54, 240–247.

Article  CAS  PubMed  Google Scholar 

Guo, Y., Ran, Z., Zhang, Y., Song, Z., Wang, L., & Yao, L., et al. (2020). Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose-treated HK-2 cells. Biomedicine & Pharmacotherapy, 131, 110684.

Article  CAS  Google Scholar 

Zhong, Y., Lee, K., Deng, Y., Ma, Y., Chen, Y., & Li, X., et al. (2019). Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nature Communications, 10(1), 4523.

Article  PubMed  PubMed Central  Google Scholar 

Podgórski, P., Konieczny, A., Lis, Ł., Witkiewicz, W., & Hruby, Z. (2019). Glomerular podocytes in diabetic renal disease. Advances in Clinical and Experimental Medicine, 28(12), 1711–1715.

Article  PubMed  Google Scholar 

Xing, L., Guo, H., Meng, S., Zhu, B., Fang, J., & Huang, J., et al. (2021). Klotho ameliorates diabetic nephropathy by activating Nrf2 signaling pathway in podocytes. Biochemical and Biophysical Research Communications, 534, 450–456.

Article  CAS  PubMed  Google Scholar 

Tung, C. W., Hsu, Y. C., Shih, Y. H., Chang, P. J., & Lin, C. L. (2018). Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology, 23(Suppl 4), 32–37.

Article  CAS  PubMed  Google Scholar 

Quan, X., Liu, H., Ye, D., Ding, X., & Su, X. (2021). Forsythoside A alleviates high glucose-induced oxidative stress and inflammation in podocytes by inactivating MAPK signaling via MMP12 inhibition. Diabetes, Metabolic Syndrome and Obesity, 14, 1885–1895.

Article  PubMed  PubMed Central  Google Scholar 

He, Y. X., Wang, T., Li, W. X., & Chen, Y. X. (2024). Long noncoding RNA protein-disulfide isomerase-associated 3 regulated high glucose-induced podocyte apoptosis in diabetic nephropathy through targeting miR-139-3p. Worl

留言 (0)

沒有登入
gif