Xiong, Y., & Zhou, L. (2019). The signaling of cellular senescence in diabetic nephropathy. Oxidative Medicine and Cellular Longevity, 2019, 7495629.
Article PubMed PubMed Central Google Scholar
Dwyer, J. P., Parving, H. H., Hunsicker, L. G., Ravid, M., Remuzzi, G., & Lewis, J. B. (2012). Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: Results from the DEMAND study. Cardiorenal Medicine, 2(1), 1–10.
Article CAS PubMed Google Scholar
Samsu, N. (2021). Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Research International, 2021, 1497449.
Article PubMed PubMed Central Google Scholar
Riedmann, H., Kayser, S., Helmstädter, M., Epting, D., & Bergmann, C. (2023). Kif21a deficiency leads to impaired glomerular filtration barrier function. Scientific Reports, 13(1), 19161.
Article CAS PubMed PubMed Central Google Scholar
Xing, Y. W., & Liu, K. Z. (2021). Azithromycin inhibited oxidative stress and apoptosis of high glucose-induced podocytes by inhibiting STAT1 pathway. Drug Development Research, 82(7), 990–998.
Babu, S., & Jayaraman, S. (2020). An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacotherapy, 131, 110702.
Leng, Y., Sun, Y., Lv, C., Li, Z., Yuan, C., & Zhang, J., et al. (2021). Characterization of β-Sitosterol for Potential Selective GR Modulation. Protein and Peptide Letters, 28(3), 276–281.
Article CAS PubMed Google Scholar
Sun, Y., Gao, L., Hou, W., & Wu, J. (2020). β-sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF-κB pathways in LPS-exposed BV2 cells. BioMed Research International, 2020, 7532306.
PubMed PubMed Central Google Scholar
Kim, K. A., Lee, I. A., Gu, W., Hyam, S. R., & Kim, D. H. (2014). β-Sitosterol attenuates high-fat diet-induced intestinal inflammation in mice by inhibiting the binding of lipopolysaccharide to toll-like receptor 4 in the NF-κB pathway. Molecular Nutrition & Food Research, 58(5), 963–972.
Gupta, R., Sharma, A. K., Dobhal, M. P., Sharma, M. C., & Gupta, R. S. (2011). Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. Journal of Diabetes, 3(1), 29–37.
Article CAS PubMed Google Scholar
Ding, S., Wang, W., Song, X., & Ma, H. (2021). Based on network pharmacology and molecular docking to explore the underlying mechanism of Huangqi Gegen decoction for treating diabetic nephropathy. Evidence-Based Complementary and Alternative Medicine: eCAM., 2021, 9928282.
Fu, S., Zhou, Y., Hu, C., Xu, Z., & Hou, J. (2022). Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy. BMC Complementary Medicine and Therapies, 22(1), 210.
Article CAS PubMed PubMed Central Google Scholar
Zheng, Y., Zhao, J., Chang, S., Zhuang, Z., Waimei, S., & Li, X., et al. (2023). β-sitosterol alleviates neuropathic pain by affect microglia polarization through inhibiting TLR4/NF-κB signaling pathway. Journal of Neuroimmune Pharmacology, 18(4), 690–703.
Zhu, L., Han, J., Yuan, R., Xue, L., & Pang, W. (2018). Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biological Research, 51(1), 9.
Article PubMed PubMed Central Google Scholar
Wang, F., Liu, C., Ren, L., Li, Y., Yang, H., & Yu, Y., et al. (2023). Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway. Pharmaceutical Biology, 61(1), 427–436.
Article CAS PubMed PubMed Central Google Scholar
Qiu, D., Song, S., Chen, N., Bian, Y., Yuan, C., & Zhang, W., et al. (2023). NQO1 alleviates renal fibrosis by inhibiting the TLR4/NF-κB and TGF-β/Smad signaling pathways in diabetic nephropathy. Cellular Signalling, 108, 110712.
Article CAS PubMed Google Scholar
Chen, X., Zhao, L., Xing, Y., & Lin, B. (2018). Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomedicine & Pharmacotherapy, 108, 7–14.
Mima, A., Yasuzawa, T., Nakamura, T., & Ueshima, S. (2020). Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Scientific Reports, 10(1), 5775.
Article CAS PubMed PubMed Central Google Scholar
Xue, W., Mao, J., Chen, Q., Ling, W., & Sun, Y. (2020). Mogroside IIIE alleviates high glucose-induced inflammation, oxidative stress and apoptosis of podocytes by the activation of AMPK/SIRT1 signaling pathway. Diabetes, Metabolic Syndrome and Obesity, 13, 3821–3830.
Article PubMed PubMed Central Google Scholar
Wang, Y., Zhu, X., Yuan, S., Wen, S., Liu, X., & Wang, C., et al. (2019). TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Frontiers in Endocrinology, 10, 603.
Article PubMed PubMed Central Google Scholar
Chen, L., Wang, Y., Luan, H., Ma, G., Zhang, H., & Chen, G. (2020). DUSP6 protects murine podocytes from high glucose‑induced inflammation and apoptosis. Molecular Medicine Reports, 22(3), 2273–2282.
Article CAS PubMed PubMed Central Google Scholar
Winiarska, A., Knysak, M., Nabrdalik, K., Gumprecht, J., & Stompór, T. (2021). Inflammation and oxidative stress in diabetic kidney disease: The targets for SGLT2 inhibitors and GLP-1 receptor agonists. International Journal of Molecular Sciences, 22(19), 10822.
Article CAS PubMed PubMed Central Google Scholar
Meza Letelier, C. E., San Martín Ojeda, C. A., Ruiz Provoste, J. J., & Frugone Zaror, C. J. (2017). [Pathophysiology of diabetic nephropathy: A literature review]. Medwave, 17(1), e6839.
Xue, H., Li, P., Luo, Y., Wu, C., Liu, Y., & Qin, X., et al. (2019). Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice. Phytomedicine, 54, 240–247.
Article CAS PubMed Google Scholar
Guo, Y., Ran, Z., Zhang, Y., Song, Z., Wang, L., & Yao, L., et al. (2020). Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose-treated HK-2 cells. Biomedicine & Pharmacotherapy, 131, 110684.
Zhong, Y., Lee, K., Deng, Y., Ma, Y., Chen, Y., & Li, X., et al. (2019). Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nature Communications, 10(1), 4523.
Article PubMed PubMed Central Google Scholar
Podgórski, P., Konieczny, A., Lis, Ł., Witkiewicz, W., & Hruby, Z. (2019). Glomerular podocytes in diabetic renal disease. Advances in Clinical and Experimental Medicine, 28(12), 1711–1715.
Xing, L., Guo, H., Meng, S., Zhu, B., Fang, J., & Huang, J., et al. (2021). Klotho ameliorates diabetic nephropathy by activating Nrf2 signaling pathway in podocytes. Biochemical and Biophysical Research Communications, 534, 450–456.
Article CAS PubMed Google Scholar
Tung, C. W., Hsu, Y. C., Shih, Y. H., Chang, P. J., & Lin, C. L. (2018). Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology, 23(Suppl 4), 32–37.
Article CAS PubMed Google Scholar
Quan, X., Liu, H., Ye, D., Ding, X., & Su, X. (2021). Forsythoside A alleviates high glucose-induced oxidative stress and inflammation in podocytes by inactivating MAPK signaling via MMP12 inhibition. Diabetes, Metabolic Syndrome and Obesity, 14, 1885–1895.
Article PubMed PubMed Central Google Scholar
He, Y. X., Wang, T., Li, W. X., & Chen, Y. X. (2024). Long noncoding RNA protein-disulfide isomerase-associated 3 regulated high glucose-induced podocyte apoptosis in diabetic nephropathy through targeting miR-139-3p. Worl
留言 (0)