Tawa R, Matsunaga H, Fujimoto T. High-performance liquid chromatographic analysis of aminoglycoside antibiotics. J Chrom A. 1998;812:141–50. https://doi.org/10.1016/S0021-9673(98)00342-2.
Posyniak A, Zmudzki J, Niedzielska J. Liquid chromatography analysis of enrofloxacin and ciprofloxacin in chicken blood spotted on filter-paper disks. J Chrom B. 2002;708:309–14. https://doi.org/10.1016/S1570-0232(02)00540-8.
Beaudette P, Bateman K. Discovery stage pharmacokinetics using dried blood spots. J Chrom B. 2004;809:153–8. https://doi.org/10.1016/j.jchromb.2004.06.018.
Barfield M, Spooner N, Lad R, Parry S, Fowles S. Application of dried blood spots combined with HPLC-MS/MS for the quantification of acetaminophen in toxicokinetic studies. J Chrom B. 2008;870:32–7. https://doi.org/10.1016/j.jchromb.2008.05.025.
Jonsson O, Palma Villar R, Nilsson LB, Norsten-Hoog C, Brogren J, Eriksson M, et al. Capillary microsampling of 25 µl blood for the determination of toxicokinetic parameters in regulatory studies in animals. Bioanalysis. 2012;4:661–74. https://doi.org/10.4155/bio.12.25.
Article CAS PubMed Google Scholar
Spreadborough MJ, Day J, Jackson-Addie K, Wilson A. Bioanalytical implementation of plasma capillary microsampling: small hurdles, large gains. Bioanalysis. 2013;5:1485–9. https://doi.org/10.4155/bio.13.120.
Article CAS PubMed Google Scholar
Verhaeghe T, Dillen L, Stieltjes H, deZwart L, Feyen B, Diels L, et al. The application of capillary microsampling in GLP toxicology studies. Bioanalysis. 2017;9:531–40. https://doi.org/10.4155/bio-2016-0297.
Article CAS PubMed Google Scholar
Spooner N, Anderson KD, Siple J, Wickremsinhe ER, Xu Y, Lee M. Microsampling: considerations for its use in pharmaceutical drug discovery and development. Bioanalysis. 2019;11:1015–38. https://doi.org/10.4155/bio-2019-0041.
Article CAS PubMed Google Scholar
EMA European Medicines Agency. ICH Guideline S3A: Note for guidance on toxicokinetics: the assessment of systemic exposure in toxicity studies - questions and answers. 2017.
James CA, Barfield MD, Maass K, Patel S, Anderson MD. Will patient-centric sampling become the norm for clinical trials after COVID-19? Nat Med. 2020;26:1810. https://doi.org/10.1038/s41591-020-01144-1.
Article CAS PubMed Google Scholar
Evans C, Arnold M, Bryan P, Duggan J, James CA, Li W, et al. Implementing Dried Blood Spot Sampling for Clinical Pharmacokinetic Determinations: Considerations from the IQ Consortium Microsampling Working Group. AAPS J. 2014;17:292–300. https://doi.org/10.1208/s12248-014-9695-3.
Article PubMed PubMed Central Google Scholar
Gutherie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.
Patel S, Bryan P, Spooner N, Timmerman P, Wickremsinhe E. Microsampling for quantitative bioanalysis, an industry update: output from an AAPS/EBF survey. Bioanalysis. 2019;11:619–28. https://doi.org/10.4155/bio-2019-0019.
Article CAS PubMed Google Scholar
Festing S, Wilkinson R. The ethics of animal research. Talking point on the use of animals in scientific research. EMBO Rep. 2007;8:526–30. https://doi.org/10.1038/sj.embor.7400993.
Article CAS PubMed PubMed Central Google Scholar
Dainty TC, Richmond ES, Davies I, Blackwell MP. Dried Blood Spot Bioanalysis: An Evaluation of Techniques and Opportunities for Reduction and Refinement in Mouse and Juvenile Rat Toxicokinetic Studies. Int J Toxicol. 2012;31:4–13. https://doi.org/10.1177/1091581811429493.
Article CAS PubMed Google Scholar
Powles-Glover N, Kirk S, Wilkinson C, Robinson S, Stewart J. Assessment of toxicological effects of blood microsampling in the vehicle dosed adult rat. Regul Toxicol Pharmacol. 2014;68:325–31. https://doi.org/10.1016/j.yrtph.2014.01.001.
Article CAS PubMed Google Scholar
Powles-Glover N, Kirk S, Jardine L, Clubb S, Stewart J. Assessment of haematological and clinical pathology effects of blood microsampling in suckling and weaned juvenile rats. Regul Toxicol Pharmacol. 2014;69:425–33. https://doi.org/10.1016/j.yrtph.2014.05.006.
Caron A, Lelong C, Bartels T, Dorchies O, Gury T, Chalier C, Benning V. Clinical and anatomic pathology effects of serial blood sampling in rat toxicology studies, using conventional or microsampling methods. Regul Toxicol Pharmacol. 2015;72:429–39. https://doi.org/10.1016/j.yrtph.2015.05.022.
Article CAS PubMed Google Scholar
Niu X, Beekhuijzen M, Schoonen W, Emmen H, Wenker M. Effects of Capillary Microsampling on Toxicological Endpoints in Juvenile Rats. Toxicol Sci. 2016;154:69–77. https://doi.org/10.1093/toxsci/kfw146.
Article CAS PubMed Google Scholar
Beekhuijzen M, de Lange Y, Lambregts A, Peter B, Wenker M, Emmen H. Satellite rats are redundant in embryo-fetal development studies. Reprod Toxicol. 2017;72:122–8. https://doi.org/10.1016/j.reprotox.2017.06.042.
Article CAS PubMed Google Scholar
Hackett MJ, Kinderknecht KD, Niemuth NA, Taylor JA, Gibbs ST, Novak J, Harbo SJ. A Factorial Analysis of Drug and Bleeding Effects in Toxicokinetic Studies. Toxicol Sci. 2019;170:234–46. https://doi.org/10.1093/toxsci/kfz092.
Article CAS PubMed Google Scholar
Lee J, Jeong JS, Kim W, Yun Kim S, Lee SJ, Bael SK, et al. Serial blood sampling effects in rat embryo-fetal development studies for toxicokinetics. Regul Toxicol Pharmacol. 2021;123:e104930. https://doi.org/10.1016/j.yrtph.2021.104930.
Karp N, Coleman L, Cotton P, Powles-Glover N, Wilson A. Impact of repeated micro and macro blood sampling on clinical chemistry and haematology in rats for toxicokinetic studies. Regul Toxicol Pharmacol. 2023;141:105386. https://doi.org/10.1016/j.yrtph.2023.105386.
Article CAS PubMed Google Scholar
U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). Guidance for Industry - Bioanalytical Method Validation (2018).
European Medicines Agency. Guideline on bioanalytical method validation, EMEA/CHMP/EWP/192217/2009 Rev.1 Corr.2 (2012).
Lynn C. Anderson, et al. Institutional Animal Care and Use Committee Guidebook, 2nd Edition, 2002. Office of Laboratory Animal Welfare, National Institutes of Health. Blackwell Science.
Prince PJ, et al. Assessment of DBS technology for the detection of therapeutic antibodies. Bioanalysis. 2010;2(8):1449–60.
Article CAS PubMed Google Scholar
Caron A, et al. Miniaturized blood sampling techniques to benefit reduction in mice and refinement in nonhuman primates: applications to bioanalysis in toxicity studies with antibody-drug conjugates. J Am Assoc Lab Anim Sci. 2015;54(2):145–52.
PubMed PubMed Central Google Scholar
Matsuda KC, Hall C, Baker-Lee C, Soto M, Scott G, Prince PJ, Retter MW. Measurement of in vivo therapeutic mAb concentrations: comparison of conventional serum/plasma collection and analysis to dried blood spot sampling. Bioanalysis. 2013;5(16):1979–90.
Article CAS PubMed Google Scholar
Joyce AP, et al. One mouse, one pharmacokinetic profile: quantitative whole blood serial sampling for biotherapeutics. Pharm Res. 2014;31(7):1823–33.
Article CAS PubMed Google Scholar
Kaendler K, et al. Evaluation of dried blood spots for the quantification of therapeutic monoclonal antibodies and detection of anti-drug antibodies. Bioanalysis. 2013;5(5):613–22.
Article CAS PubMed Google Scholar
Kehler J, Akella N, Citerone D, Szapacs M. Application of DBS for the quantitative assessment of a protein biologic using on-card digestion LC–MS-MS or immunoassay. Bioanalysis. 2011;3:2283–90.
Article CAS PubMed Google Scholar
Li H, et al. Application of Mitra ((R)) microsampling for pharmacokinetic bioanalysis of monoclonal antibodies in rats. Bioanalysis. 2019;11(1):13–20.
留言 (0)