Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics

Walsh, G. & Walsh, E. Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 40, 1722–1760 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fülöp, T., Mészáros, T., Kozma, G. T., Szebeni, J. & Józsi, M. Infusion reactions associated with the medical application of monoclonal antibodies: the role of complement activation and possibility of inhibition by factor H. Antibodies 7, 14 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Rombouts, M. D., Swart, E. L., van den Eertwegh, A. J. M. & Crul, M. Systematic review on infusion reactions to and infusion rate of monoclonal antibodies used in cancer treatment. Anticancer Res. 40, 1201–1218 (2020).

Article  CAS  PubMed  Google Scholar 

Sala-Cunill, A., Luengo, O. & Cardona, V. Biologics and anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 19, 439–446 (2019).

Article  CAS  PubMed  Google Scholar 

Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Krishna, M. & Nadler, S. G. Immunogenicity to biotherapeutics – the role of anti-drug immune complexes. Front. Immunol. 7, 21 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Gunn, G. R. et al. From the bench to clinical practice: understanding the challenges and uncertainties in immunogenicity testing for biopharmaceuticals. Clin. Exp. Immunol. 184, 137–146 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Cassotta, A. et al. A single T cell epitope drives the neutralizing anti-drug antibody response to natalizumab in multiple sclerosis patients. Nat. Med. 25, 1402–1407 (2019). This ABIRISK consortium study creates and characterizes panels of monoclonal antibodies from two anti-natalizumab antibody-positive patients.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehta, P. & Manson, J. J. What is the clinical relevance of TNF inhibitor immunogenicity in the management of patients with rheumatoid arthritis? Front. Immunol. 11, 589 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ridker, P. M. et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N. Engl. J. Med. 376, 1517–1526 (2017). Multiple phase III clinical studies of a humanized antibody (bococizumab) in thousands of patients reveals high rates of ADAs that correlate with adverse effects on pharmacokinetics and efficacy.

Article  CAS  PubMed  Google Scholar 

Yu, R. J., Krantz, M. S., Phillips, E. J. & Stone, C. A. Emerging causes of drug-induced anaphylaxis: a review of anaphylaxis-associated reports in the FDA adverse event reporting system (FAERS). J. Allergy Clin. Immunol. Pract. 9, 819–829.e2 (2021).

Article  CAS  PubMed  Google Scholar 

Chung, C. H. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. N. Engl. J. Med. 358, 1109–1117 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casadevall, N. et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346, 469–475 (2002). Ground-breaking report that demonstrates that ADAs to protein therapeutics can on rare occasions have a severe clinical impact.

Article  CAS  PubMed  Google Scholar 

Schellekens, H. & Jiskoot, W. Eprex-associated pure red cell aplasia and leachates. Nat. Biotechnol. 24, 613–614 (2006).

Article  CAS  PubMed  Google Scholar 

McKoy, J. M. et al. Epoetin‐associated pure red cell aplasia: past, present, and future considerations. Transfusion 48, 1754–1762 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Rubic-Schneider, T. et al. T-cell assays confirm immunogenicity of tungsten-induced erythropoietin aggregates associated with pure red cell aplasia. Blood Adv. 1, 367–379 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibbons, J. B., Laber, M. & Bennett, C. L. Humira: the first $20 billion drug. Am. J. Manag. Care 29, 78–80 (2023).

Article  PubMed  Google Scholar 

Highlights of prescribing information, HUMIRA® (adalimumab) injection, for subcutaneous use. US Food and Drug Administration www.accessdata.fda.gov/drugsatfda_docs/label/2018/125057s410lbl.pdf (2018).

Bartelds, G. M. et al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA 305, 1460–1468 (2011).

Article  CAS  PubMed  Google Scholar 

Murdaca, G. et al. Immunogenicity of infliximab and adalimumab: what is its role in hypersensitivity and modulation of therapeutic efficacy and safety? Expert Opin. Drug Saf. 15, 43–52 (2016).

Article  CAS  PubMed  Google Scholar 

Koren, E. et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J. Immunol. Methods 333, 1–9 (2008).

Article  CAS  PubMed  Google Scholar 

Mire-Sluis, A. R. et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J. Immunol. Methods 289, 1–16 (2004).

Article  CAS  PubMed  Google Scholar 

Shankar, G. et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations. AAPS J. 16, 658–673 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Immunogenicity assessment for therapeutic protein products. Docket number: FDA-2013-D-0092. US Food and Drug Administration www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-assessment-therapeutic-protein-products (2014).

Immunogenicity testing of therapeutic protein products — developing and validating assays for anti-drug antibody detection. Docket number FDA-2009-D-0539. US Food and Drug Administration www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-testing-therapeutic-protein-products-developing-and-validating-assays-anti-drug (2019).

Immunogenicity assessment of biotechnology-derived therapeutic proteins — scientific guideline EMEA/CHMP/BMWP/14327/2006 Rev 1. European Medicines Agency www.ema.europa.eu/en/immunogenicity-assessment-biotechnology-derived-therapeutic-proteins-scientific-guideline (2017).

Carter, P. J. & Rajpal, A. Designing antibodies as therapeutics. Cell 185, 2789–2805 (2022).

Article  CAS  PubMed  Google Scholar 

Ebrahimi, S. B. & Samanta, D. Engineering protein-based therapeutics through structural and chemical design. Nat. Commun. 14, 2411 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbas, A. K., Lichtman, A. H. & Pillai, S. in Cellular and Molecular Immunology 10th edn, Ch. 6 (Elsevier, 2021).

Cornaby, C. et al. B cell epitope spreading: mechanisms and contribution to autoimmune diseases. Immunol. Lett. 163, 56–68 (2015).

Article  CAS  PubMed  Google Scholar 

Fahlquist-Hagert, C. et al. Antigen presentation by B cells enables epitope spreading across an MHC barrier. Nat. Commun. 14, 6941 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy, K. M., Weaver, C. & Berg, L. J. Janeway’s Immunobiology (eds Twitchell, B. & Barrett-Bressack, C.) 10th edn (W. W. Norton and Company, 2022).

Moore, W. V. & Leppert, P. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J. Clin. Endocrinol. Metab. 51, 691–697 (1980). Early study demonstrating that the incidence of ADAs in patients treated with human growth hormone correlates with the level of aggregates.

Article  CAS  PubMed  Google Scholar 

Joubert, M. K. et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J. Biol. Chem. 287, 25266–25279 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bessa, J. et

留言 (0)

沒有登入
gif