Grant, T. A., Balasubramanian, D. & Almagro-Moreno, S. JMM profile: Vibrio cholerae: an opportunist of human crises. J. Med. Microbiol. 70, 001423 (2021).
White, C., Bader, C. & Teter, K. The manipulation of cell signaling and host cell biology by cholera toxin. Cell Signal. 100, 110489 (2022).
Article CAS PubMed PubMed Central Google Scholar
Cuatrecasas, P. Gangliosides and membrane receptors for cholera toxin. Biochemistry 12, 3558–3566 (1973).
Article CAS PubMed Google Scholar
Cuatrecasas, P., Parikh, I. & Hollenberg, M. D. Affinity chromatography and structural analysis of Vibrio cholerae enterotoxin–ganglioside agarose and the biological effects of ganglioside-containing soluble polymers. Biochemistry 12, 4253–4264 (1973).
Article CAS PubMed Google Scholar
Heyningen, S. V. Cholera toxin: interaction of subunits with ganglioside GM1. Science 183, 656–657 (1974).
Holmgren, J., Lonnroth, I., Mansson, J. & Svennerholm, L. Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl Acad. Sci. USA 72, 2520–2524 (1975).
Article CAS PubMed PubMed Central Google Scholar
King, C. A. & Van Heyningen, W. E. Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J. Infect. Dis. 127, 639–647 (1973).
Article CAS PubMed Google Scholar
Holmgren, J., Lönnroth, I. & Svennerholm, L. Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect. Immun. 8, 208–214 (1973).
Article CAS PubMed PubMed Central Google Scholar
Merritt, E. A. et al. Structural studies of receptor binding by cholera toxin mutants. Protein Sci. 6, 1516–1528 (1997).
Article CAS PubMed PubMed Central Google Scholar
Merritt, E. A. et al. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3, 166–175 (1994).
Article CAS PubMed PubMed Central Google Scholar
Turnbull, W. B., Precious, B. L. & Homans, S. W. Dissecting the cholera toxin–ganglioside GM1 interaction by isothermal titration calorimetry. J. Am. Chem. Soc. 126, 1047–1054 (2004).
Article CAS PubMed Google Scholar
Cervin, J. et al. GM1 ganglioside-independent intoxication by cholera toxin. PLoS Pathog. 14, e1006862 (2018).
Article PubMed PubMed Central Google Scholar
Breimer, M. E., Hansson, G. C., Karlsson, K. A., Larson, G. & Leffler, H. Glycosphingolipid composition of epithelial cells isolated along the villus axis of small intestine of a single human individual. Glycobiology 22, 1721–1730 (2012).
Article CAS PubMed Google Scholar
Alisson-Silva, F. et al. Human evolutionary loss of epithelial Neu5Gc expression and species-specific susceptibility to cholera. PLoS Pathog. 14, e1007133 (2018).
Article PubMed PubMed Central Google Scholar
Glass, R. I. et al. Predisposition for cholera of individuals with O blood group. Possible evolutionary significance. Am. J. Epidemiol. 121, 791–796 (1985).
Article CAS PubMed Google Scholar
Barua, D. & Paguio, A. S. ABO blood groups and cholera. Ann. Hum. Biol. 4, 489–492 (1977).
Article CAS PubMed Google Scholar
Chaudhuri, A. & De, S. Cholera and blood-groups. Lancet 2, 404 (1977).
Article CAS PubMed Google Scholar
Swerdlow, D. L. et al. Severe life-threatening cholera associated with blood group O in Peru: implications for the Latin American epidemic. J. Infect. Dis. 170, 468–472 (1994).
Article CAS PubMed Google Scholar
Harris, J. B. et al. Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect. Immun. 73, 7422–7427 (2005).
Article CAS PubMed PubMed Central Google Scholar
Harris, J. B. et al. Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. PLoS Negl. Trop. Dis. 2, e221 (2008).
Article PubMed PubMed Central Google Scholar
Heggelund, J. E. et al. High-resolution crystal structures elucidate the molecular basis of cholera blood group dependence. PLoS Pathog. 12, e1005567 (2016).
Article PubMed PubMed Central Google Scholar
Heggelund, J. E. et al. Both El Tor and classical cholera toxin bind blood group determinants. Biochem. Biophys. Res. Commun. 418, 731–735 (2012).
Article CAS PubMed Google Scholar
Holmner, A. et al. Novel binding site identified in a hybrid between cholera toxin and heat-labile enterotoxin: 1.9 Å crystal structure reveals the details. Structure 12, 1655–1667 (2004).
Article CAS PubMed Google Scholar
Bennun, F. R., Roth, G. A., Monferran, C. G. & Cumar, F. A. Binding of cholera toxin to pig intestinal mucosa glycosphingolipids: relationship with the ABO blood group system. Infect. Immun. 57, 969–974 (1989).
Article CAS PubMed PubMed Central Google Scholar
Wands, A. M. et al. Fucosylated molecules competitively interfere with cholera toxin binding to host cells. ACS Infect. Dis. 4, 758–770 (2018).
Article CAS PubMed PubMed Central Google Scholar
Prudden, A. R. et al. Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc. Natl Acad. Sci. USA 114, 6954–6959 (2017).
Article CAS PubMed PubMed Central Google Scholar
Heim, J. B., Hodnik, V., Heggelund, J. E., Anderluh, G. & Krengel, U. Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site. Sci. Rep. 9, 12243 (2019).
Article PubMed PubMed Central Google Scholar
Garber, J. M., Hennet, T. & Szymanski, C. M. Significance of fucose in intestinal health and disease. Mol. Microbiol. 115, 1086–1093 (2021).
Article CAS PubMed Google Scholar
Wands, A. M. et al. Fucosylation and protein glycosylation create functional receptors for cholera toxin. eLife 4, e09545 (2015).
Article PubMed PubMed Central Google Scholar
Blanco, L. P. & DiRita, V. J. Bacterial-associated cholera toxin and GM1 binding are required for transcytosis of classical biotype Vibrio cholerae through an in vitro M cell model system. Cell Microbiol 8, 982–998 (2006).
Article CAS PubMed Google Scholar
Sethi, A. et al. Cell type and receptor identity regulate cholera toxin subunit B (CTB) internalization. Interface Focus 9, 20180076 (2019).
留言 (0)