Optical nanoparticle synthesis: a comprehensive laser ablation review

A.A.F.A.-A. Jenan Hussien Taha, N.K. Abbas, Synthesis and evaluation of platinum nanoparticles using F. Carica FruitExtract and their antimicrobial activities. Baghdad Sci. J. 20(3), 1146–1154 (2023)

Article  Google Scholar 

N. Abdalameer, H.M.J. Ali, M.D. Majed, The effect of cold plasma generated from argon gas on the optical band gap of nanostructures. Kuwait J. Sci. 51(2), 100195 (Apr. 2024). https://doi.org/10.1016/j.kjs.2024.100195

M. Rana, A. Jain, V. Rani, P. Chowdhury, Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorg. Chem. Commun. 112, 107723 (2020). https://doi.org/10.1016/j.inoche.2019.107723

Article  Google Scholar 

K.S. Khashan, F.A. Abdulameer, M.S. Jabir, A.A. Hadi, G.M. Sulaiman, Anticancer activity and toxicity of carbon nanoparticles produced by pulsed laser ablation of graphite in water. Adv. Nat. Sci. Nanosci. Nanotechnol. 11(3) (2020). https://doi.org/10.1088/2043-6254/aba1de

F. Meng, Z. Dehouche, A. Nutasarin, G.R. Fern, Effective MgO-doped TiO2 nanoaerogel coating for crystalline silicon solar cells improvement. Int. J. Energy Res. 42(12), 3915–3927 (2018). https://doi.org/10.1002/er.4128

Article  Google Scholar 

A. Subhan, A.H.I. Mourad, Y. Al-Douri, Influence of laser process parameters, Liquid Medium, and External Field on the synthesis of Colloidal Metal nanoparticles using pulsed laser ablation in Liquid: a review. Nanomaterials. 12(13) (2022). https://doi.org/10.3390/nano12132144

A. Yasoob, N. Abdalameer, N. K., A.Q. Mohammed, Plasma production and applications: a review. Int. J. Nanosci. 21(06), 2230003 (2022)

Article  Google Scholar 

I. Hussain, N.B. Singh, A. Singh, H. Singh, S.C. Singh, Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38(4), 545–560 (2016). https://doi.org/10.1007/s10529-015-2026-7

Article  Google Scholar 

H.K. Tawfeeq, N.K. Abdalameer, R.H. Jassim, M.M. Shehab, Silver Nanoparticles Synthesized by Cold Plasma as an Antibiofilm Agent against Staphylococcus epidermidis Isolated from Acne, Nano Biomed. Eng., pp. 1–9, Oct. 2023, https://doi.org/10.26599/NBE.2023.9290042

A. Singh, J. Vihinen, E. Frankberg, L. Hyvärinen, M. Honkanen, E. Levänen, Pulsed laser ablation-Induced Green synthesis of TiO2 nanoparticles and application of Novel Small Angle X-Ray scattering technique for nanoparticle size and size distribution analysis. Nanoscale Res. Lett. 11(1), 1–9 (2016). https://doi.org/10.1186/s11671-016-1608-1

Article  ADS  Google Scholar 

M.I. Mendivil Palma, B. Krishnan, G.A.C. Rodriguez, T.K. Das Roy, D.A. Avellaneda, S. Shaji, Synthesis and Properties of Platinum Nanoparticles by Pulsed Laser Ablation in Liquid, J. Nanomater., vol. 2016, 2016, https://doi.org/10.1155/2016/9651637

G.K. Yogesh, S. Shukla, D. Sastikumar, P. Koinkar, Progress in Pulsed Laser Ablation in Liquid (PLAL) Technique for the Synthesis of Carbon Nanomaterials: A Review, vol. 127 (no. 11. Springer, Berlin Heidelberg, 2021)

Google Scholar 

L.D. Geoffrion et al., Naked Selenium nanoparticles for Antibacterial and Anticancer treatments. ACS Omega. (2020). https://doi.org/10.1021/acsomega.9b03172

Article  Google Scholar 

T.A. Khalepha, N.K. Abdalameer, Comparative analysis of plasma generated using LIBS technique for different wavelengths of pulsed laser of a cadmium target, Baghdad Sci. J., Jun. 2024, https://doi.org/10.21123/bsj.2024.9322

Z.J. Shanan, N.K. Abdalameer, H.M.J. Ali, Zinc Oxide Nanoparticle properties and Antimicrobial Activity. Int. J. Nanosci. 21(3), 1–6 (2022). https://doi.org/10.1142/S0219581X2250017X

Article  Google Scholar 

R. Wang, X. Wang, X. Xi, R. Hu, G. Jiang, Preparation and photocatalytic activity of magnetic Fe3O 4/SiO2/TiO2 composites, Adv. Mater. Sci. Eng., vol. 2012, 2012, https://doi.org/10.1155/2012/409379

E.M. Abbas, S.N. Mazhir, N. Abdalameer, In Vitro evaluating Antimicrobial Activity for MgO nanoparticles prepared by PLAL. Int. J. Nanosci. 21(6), 1–6 (2022). https://doi.org/10.1142/S0219581X2250048X

Article  Google Scholar 

L.D. Geoffrion et al., Feb., Naked Selenium Nanoparticles for Antibacterial and Anticancer Treatments, ACS Omega, vol. 5, no. 6, pp. 2660–2669, 2020, https://doi.org/10.1021/acsomega.9b03172

R.H. Jassim, K.A. Aadim, N.K. Abdalameer, (2024, February). Using laser induced plasma technique to synthesis cobalt oxide and CoO/ZnO nanoparticles and employ them as an antibacterial activity. In AIP Conference Proceedings (Vol. 2922, No. 1). AIP Publishing

M.P. Deshpande, S.H. Chaki, N.H. Patel, S.V. Bhatt, B.H. Soni, Study on nanoparticles of ZnSe synthesized by chemical method and their characterization. J. Nano- Electron. Phys. 3(1), 193–202 (2011)

Google Scholar 

M. Ruiz et al., Characterization of a laser plasma produced from a graphite target. J. Phys. Conf. 511(1), 4–8 (2014). Ser.https://doi.org/10.1088/1742-6596/511/1/012064

Article  Google Scholar 

E.M. Abbas, S.N. Mazhir, N.K. Abdalameer, In Vitro evaluating Antimicrobial Activity for MgO nanoparticles prepared by PLAL. Int. J. Nanosci. 21(06), 2250048 (2022)

Article  Google Scholar 

S. Nie, Y. Xing, G.J. Kim, J.W. Simons, Nanotechnology applications in Cancer. Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007). https://doi.org/10.1146/annurev.bioeng.9.060906.152025

Article  Google Scholar 

M.A. Nawaz et al., Microstructural study of as grown and 650°C annealed ZnO nanorods: X-ray peak profile analysis. Dig. J. Nanomater Biostructures. 11(2), 537–546 (2016)

Google Scholar 

A. Naveed Ul Haq, A. Nadhman, I. Ullah, G. Mustafa, M. Yasinzai, I. Khan, Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity, J. Nanomater., vol. 2017, no. Tables 1, 2017, https://doi.org/10.1155/2017/8510342

R.A. Ismail, K.S. Khashan, A.M. Alwan, Study of the Effect of Incorporation of CdS nanoparticles on the porous Silicon Photodetector. Silicon. 9(3) (2017). https://doi.org/10.1007/s12633-016-9446-4

S. Patel, P. Patel, S.R. Bakshi, Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology. 69(2), 245–263 (2017). https://doi.org/10.1007/s10616-016-0054-3

Article  Google Scholar 

X. Liang, Y. Qin, W. Xie, Z. Deng, C. Yang, X. Su, Facile synthesis of high-stable and monodisperse Fe3O4/carbon flake-like nanocomposites and their excellent gas sensing properties. J. Alloys Compd. 818, 152898 (2020). https://doi.org/10.1016/j.jallcom.2019.152898

Article  Google Scholar 

A. Roy et al., Biological synthesis of nanocatalysts and their applications. Catalysts. 11(12), 1494 (Dec. 2021). https://doi.org/10.3390/catal11121494

S.K. Kulkarni, Nanotechnology: principles and practices. Nanotechnol Princ Pract. 125–133 (2015). https://doi.org/10.1007/978-3-319-09171-6

S. Dwivedi, A.A. AlKhedhairy, M. Ahamed, J. Musarrat, Biomimetic synthesis of Selenium Nanospheres by bacterial strain JS-11 and its role as a Biosensor for Nanotoxicity Assessment: a Novel Se-Bioassay. PLoS One. 8(3) (2013). https://doi.org/10.1371/journal.pone.0057404

A.A.R. Niema, E.M. Abbas, N.K. Abdalameer, Enhanced antibacterial activity of selenium nanoparticles prepared by cold plasma in liquid, Digest J. Nanomater. Biostruct. 16(4), 1479–1485 (2021)

A.H. Souici, N. Keghouche, J.A. Delaire, H. Remita, A. Etcheberry, M. Mostafavi, Structural and Optical Properties of PbS Nanoparticles Synthesized by the Radiolytic Method, J. Phys. Chem. C, vol. 113, no. 19, pp. 8050–8057, Apr. 2009, https://doi.org/10.1021/jp811133b

K.A. Khalaph, N.K. Abdalameer, A.Q. Mousa, Study the physical properties of CdSe nanostructures prepared by a pulsed laser deposition method Study the Physical Properties of CdSe Nanostructures Prepared by a Pulsed Laser Deposition Method, vol. 130023, no. November, 2021

N.K. Abdalameer, O.A. Fahad, K.A. Khalaph, Effect of pulsed laser frequency on CdTe deposited as solar cells device. Int. J. Nanosci. 21(1), 1–8 (2022). https://doi.org/10.1142/S0219581X21500629

Article  Google Scholar 

R. Quenching, A. Oxidation, Pulsed-laser–induced reactive quenching at liquid-solid interface: aqueous oxidation of iron. Phys. Rev. Lett. 19(3), 238–241 (1987)

Google Scholar 

M.H. Mahdieh, A. Khosravi, Nano-objects Colloidal brass nanoparticles produced by pulsed laser ablation in deionized water and the effect of external electric field on particle size characteristics and ablation rate. Nano-Structures Nano-Objects. 24, 100580 (2020). https://doi.org/10.1016/j.nanoso.2020.100580

Article  Google Scholar 

R.C. Forsythe, C.P. Cox, M.K. Wilsey, A.M. Mu, Pulsed laser in Liquids made nanomaterials for Catalysis, 2021, https://doi.org/10.1021/acs.chemrev.0c01069

E. Fazio et al., Nanoparticles Engineering by Pulsed laser ablation in liquids: concepts and applications. MDPI. 10(2317), 3–50 (2020)

Google Scholar 

H. Naser, H. Mohammed, S. Khalil, I. Imhan, Parameters affecting the size of gold nanoparticles prepared by pulsed laser ablation in Liquid. Brazilian J. Phys. 878–898 (2021). https://doi.org/10.1007/s13538-021-00875-x

J. Xiao, P. Liu, C.X. Wang, G.W. Yang, Progress in materials Science External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater. Sci. 87, 140–220 (2017). https://doi.org/10.1016/j.pmatsci.2017.02.004

Article  Google Scholar 

J. Zhang, J. Claverie, M. Chaker, D. Ma, Colloidal Metal nanoparticles prepared by laser ablation and their applications, pp. 986–1006, 2017, https://doi.org/10.1002/cphc.201601220

B. Jaleh, M. Nasrollahzadeh, B. Feizi, M. Eslamipanah, M. Sajjadi, H. Ghafuri, State-of-the-art technology: recent investigations on laser-mediated synthesis of nanocomposites for environmental remediation. Ceram. Int. 47(8), 10389–10425 (2021). https://doi.org/10.1016/j.ceramint.2020.12.197

Article  Google Scholar 

A. Al-kattan, D. Grojo, C. Drouet, A. Mouskeftaras, P. Delaporte, Short-Pulse Lasers: A Versatile Tool in Creating Novel Nano- / (Micro-Structures and Compositional Analysis for Healthcare and Wellbeing Challenges, 2021)

S. Dittrich, R. Streubel, C. Mcdonnell, H.P. Huber, S. Barcikowski, B. Gökce, Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air. Appl. Phys. A 125(6), 1–10 (2019). https://doi.org/10.1007/s00339-019-2704-8

Article  Google Scholar 

T.M. Neddersen, J. Chumanov, G. Cotton, Laser ablation of metals: a New Method for Preparing SERS active colloids. Appl. Spectrosc. 47(12), 1959–1964 (1993)

Article  ADS  Google Scholar 

M.D. Aglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl. Surf. Sci. 348, 4–9 (2015). https://doi.org/10.1016/j.apsusc.2015.01.082

Article  Google Scholar 

P. Ray, M. Pilania, The application and influence of ionic liquids in nanotechnology, Mater. Today Proc., vol. 47, no. xxxx, pp. 2835–2838, 2021, https://doi.org/10.1016/j.matpr.2021.03.602

A. Reza, A. Rashid, Laser ablation technique for synthesis of metal nanoparticle nanoparticle in in Liquid Liquid. Laser Technol. its Appl. (2018). https://doi.org/10.5772/intechopen.80374

Article  Google Scholar 

V.A. Svetlichnyi et al., in Metal Oxide Oxide Nanoparticle Nanoparticle Preparation Metal Preparation by by pulsed pulsed laser laser ablation of metallic targets in liquid ablation of metallic targets in Liquid (2016), pp. 245–263.

A. Hahn, S. Barcikowski, B.N. Chichkov, L. Zentrum, Influences on nanoparticle production during pulsed laser ablation. JLMN-Journal Laser Micro/Nanoengineering. 3(2) (2008). https://doi.org/10.2961/jlmn.2008.02.0003

E. Solati, M. Mashayekh, Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A 689–694 (2013). https://doi.org/10.1007/s00339-013-7812-2

G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater. Sci. 52(4), 648–698 (May 2007). https://doi.org/10.1016/J.PMATSCI.2006.10.016

K. Wang, Laser based fabrication of Graphene. Adv. Graphene Sci. 4, 77–95 (2013)

P.C. Ã, T. Tsuge, H. Funakubo, O. Odawara, H. Wada, Laser Wavelength Effect on size and morphology of Silicon nanoparticles prepared by laser ablation in Liquid. Japanese J. Appl. Phys. 5, 1–4 (2013)

Google Scholar 

A.K. Buraihi, N.K. Abdalameer, N.J. Ghadeeb, (2024). Synthesis of zinc oxide nanoflakes by non-thermal plasma technique and evaluation of Anticancer Activity in Vitro. Int. J. Nanosci., 2450005. https://doi.org/10.1142/S0219581X24500054

M.D. Majed, N.K. Abdalameer, (2024). Influence of Cold plasma and Photocatalysis on properties of SnO2 Nanostructure prepared by laser deposition. Int. J. Nanosci., 2450012. https://doi.org/10.1142/S0219581X2450012

N. Patra et al., Parametric investigations on the influence of nano-second nd 3 +: YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique. Appl. Surf. Sci. 366, 104–111 (2016). https://doi.org/10.1016/j.apsusc.2016.01.072

Article  ADS  Google Scholar 

H. Naser, M.A. Alghoul, M.K. Hossain, N. Asim, M.F. Abdullah, M.S. Ali, … N. Amin, The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. J. Nanoparticle Res., 21, 1–28 (2019)

A. Chaturvedi, M.P. Joshi, P. Mondal, A.K. Sinha, A.K. Srivastava, Growth of anatase and rutile phase TiO2 nanoparticles using pulsed laser ablation in liquid: influence of surfactant addition and ablation time variation. Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.10.133

Article  Google Scholar 

留言 (0)

沒有登入
gif