Performance analysis of tungsten disulfide (WS2) as HTL for MoS2 solar cell with ZnSe ETL and graphene as window layer

M. Atowar Rahman, Performance analysis of WSe2-based bifacial solar cells with different electron transport and hole transport materials by SCAPS-1D. Heliyon 8(6), e09800 (2022). https://doi.org/10.1016/j.heliyon.2022.e09800

Article  Google Scholar 

S.A. Khalate, R.S. Kate, R.J. Deokate, A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: a focus towards efficiency. Sol. Energy 169, 616–633 (2018). https://doi.org/10.1016/j.solener.2018.05.036

Article  ADS  Google Scholar 

S. Mushtaq et al., Performance optimization of lead-free MASnBr 3 based perovskite solar cells by SCAPS-1D device simulation. Sol. Energy 249, 401–413 (2023). https://doi.org/10.1016/j.solener.2022.11.050

Article  ADS  Google Scholar 

A.M. Islam et al., Performance analysis of tungsten disulfide (WS2) as an alternative buffer layer for CdTe solar cell through numerical modeling. Opt Mater (Amst) 120, 111296 (2021). https://doi.org/10.1016/j.optmat.2021.111296

Article  Google Scholar 

Md.F. Rahman et al., Improving the efficiency of a CIGS solar cell to above 31% with Sb2 S3 as a new BSF: a numerical simulation approach by SCAPS-1D. RSC Adv. 14(3), 1924–1938 (2024). https://doi.org/10.1039/D3RA07893K

Article  ADS  Google Scholar 

D. Ding et al., Optimization of rear surface morphology in n-type TOPCon c-Si solar cells. Sol. Energy Mater. Sol. Cells 277, 113142 (2024). https://doi.org/10.1016/j.solmat.2024.113142

Article  Google Scholar 

T.D. Lee, A.U. Ebong, A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017). https://doi.org/10.1016/j.rser.2016.12.028

Article  Google Scholar 

J.-Q. Hu, X.-H. Shi, S.-Q. Wu, K.-M. Ho, Z.-Z. Zhu, Dependence of electronic and optical properties of MoS2 multilayers on the interlayer coupling and van hove singularity. Nanoscale Res. Lett. 14(1), 288 (2019). https://doi.org/10.1186/s11671-019-3105-9

Article  ADS  Google Scholar 

J.Y. Kwak, Absorption coefficient estimation of thin MoS2 film using attenuation of silicon substrate Raman signal. Results Phys 13, 102202 (2019). https://doi.org/10.1016/j.rinp.2019.102202

Article  Google Scholar 

K.K. Kam, B.A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Phys. Chem. 86(4), 463–467 (1982). https://doi.org/10.1021/j100393a010

Article  Google Scholar 

M. Shanmugam, C.A. Durcan, B. Yu, Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells. Nanoscale 4(23), 7399 (2012). https://doi.org/10.1039/c2nr32394j

Article  ADS  Google Scholar 

M. Shanmugam, T. Bansal, C.A. Durcan, B. Yu, Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell. Appl Phys Lett. (2012). https://doi.org/10.1063/13703602

Article  Google Scholar 

H. Rashid, K.S. Rahman, M.I. Hossain, N. Tabet, F.H. Alharbi, N. Amin, Prospects of molybdenum disulfide (MoS2) as an alternative absorber layer material in thin film solar cells from numerical modeling. Chalcogenide Letters 11, 397–403 (2014)

Google Scholar 

Dey, M., Shahriar, Md. F., Ali, A., Dey, M., & Das, N. K. (Feb. 2019) Design and optimization of an efficient molybdenum disulfide (MoS<inf>2</inf>) solar cell with tin sulfide BSF. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), IEEE, pp. 1–5. https://doi.org/10.1109/ECACE.2019.8679178.

M.I. Hossain, F.H. Alharbi, F. El-Mellouhi, N. Tabet, Design optimization of solar cell with molybdenum sulfide as light absorber. J Photonics Energy 8(02), 1 (2018). https://doi.org/10.1117/1.JPE.8.025501

Article  Google Scholar 

M.F. Wahid, U. Das, B.K. Paul, S. Paul, M.N. Howlader, M.S. Rahman, Numerical simulation for enhancing performance of mos2 hetero-junction solar cell employing Cu2O as hole transport layer. Mater. Sci. Appl. 14(9), 458–472 (2023). https://doi.org/10.4236/msa.2023.149030

Article  Google Scholar 

M.D. Haque, M.H. Ali, M.F. Rahman, A.Z.M.T. Islam, Numerical analysis for the efficiency enhancement of MoS2 solar cell: a simulation approach by SCAPS-1D. Opt. Mater. (Amst) 131, 112678 (2022). https://doi.org/10.1016/j.optmat.2022.112678

Article  Google Scholar 

A. Rahmoune, O. Babahani, Numerical analysis of Al/Gr/ETL/MoS2/Sb2S3/Ni solar cell using non-toxic In2S3/SnS2/ZnSe electron transport layer. Optik (Stuttg) 283, 170875 (2023). https://doi.org/10.1016/j.ijleo.2023.170875

Article  Google Scholar 

Md.H. Ali, Md.A. Al Mamun, Md.D. Haque, Md.F. Rahman, M.K. Hossain, A.ZMd. Touhidul Islam, Performance enhancement of an MoS 2 -based heterojunction solar cell with an in 2 Te 3 back surface field: a numerical simulation approach. ACS Omega 8(7), 7017–7029 (2023). https://doi.org/10.1021/acsomega.2c07846

Article  Google Scholar 

A. Buba, Optoelectronic properties of zinc selenide (ZnSe) thin films deposited using chemical bath deposition (CBD) technique. Br J Appl Sci Technol 14(3), 1–7 (2016). https://doi.org/10.9734/BJAST/2016/23622

Article  Google Scholar 

J. Ke et al., Investigation on structural and optical properties of ZnSe thin films prepared by selenization. Superlattices Microstruct. 156, 106965 (2021). https://doi.org/10.1016/j.spmi.2021.106965

Article  Google Scholar 

G. Riveros, H. Gómez, R. Henrı́quez, R. Schrebler, R.E. Marotti, E.A. Dalchiele, Electrodeposition and characterization of ZnSe semiconductor thin films. Solar Energy Mater. Solar Cells 70(3), 255–268 (2001). https://doi.org/10.1016/S0927-0248(01)00066-6

Article  Google Scholar 

Md.A. Sayeed, H.K. Rouf, KMd.A. Hussain, Effect of thickness on characteristics of ZnSe thin film synthesized by vacuum thermal evaporation. J. Theor. Appl. Phys. 14(3), 251–259 (2020). https://doi.org/10.1007/s40094-020-00378-1

Article  ADS  Google Scholar 

C. Lokhande, ZnSe thin films by chemical bath deposition method. Sol. Energy Mater. Sol. Cells 55(4), 379–393 (1998). https://doi.org/10.1016/S0927-0248(98)00112-3

Article  Google Scholar 

M. Öztaş, M. Bedir, Ö.F. Bakkaloğlu, R. Ormancı, Effect of Zn: Se ratio on the properties of sprayed ZnSe thin films. Acta Phys Pol A 107(3), 525–534 (2005). https://doi.org/10.12693/APhysPolA.107.525

Article  ADS  Google Scholar 

M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, A.Z. Moshfegh, Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz 3(2), 90–204 (2018). https://doi.org/10.1039/C7NH00137A

Article  ADS  Google Scholar 

D. Tonti, F. Varsano, F. Decker, C. Ballif, M. Regula, M. Remškar, Preparation and photoelectrochemistry of semiconducting WS2 thin films. J. Phys. Chem. B 101(14), 2485–2490 (1997). https://doi.org/10.1021/jp962550i

Article  Google Scholar 

D.A. Dholakia, G.K. Solanki, S.G. Patel, M.K. Agarwal, Optical band gap studies of tungsten sulphoselenide single crystals grown by a DVT technique. Scientia Iranica 10, 373–382 (2003)

Google Scholar 

S. Ladhane et al., Enhanced photoelectrochemical activity realized from WS2 thin films prepared by rf-magnetron sputtering for water splitting. ChemElectroChem (2024). https://doi.org/10.1002/celc.202400002

Article  Google Scholar 

M. Huang et al., Highly oriented monolayer graphene grown on a Cu/Ni(111) alloy foil. ACS Nano 12(6), 6117–6127 (2018). https://doi.org/10.1021/acsnano.8b02444

Article  Google Scholar 

F. Ren, M. Yao, M. Li, H. Wang, Tailoring the structural and electronic properties of graphene through ion implantation. Materials 14(17), 5080 (2021). https://doi.org/10.3390/ma14175080

Article  ADS  Google Scholar 

M. Liu et al., One-step chemical exfoliation of graphite to ∼100% few-layer graphene with high quality and large size at ambient temperature. Chem. Eng. J. 355, 181–185 (2019). https://doi.org/10.1016/j.cej.2018.08.146

Article  ADS  Google Scholar 

M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Modeling thin-film PV devices. Prog. Photovoltaics Res. Appl. 12(23), 143–153 (2004). https://doi.org/10.1002/pip.524

Article  Google Scholar 

M.J. Speirs et al., Origin of the increased open circuit voltage in PbS–CdS core–shell quantum dot solar cells. J Mater Chem A Mater 3(4), 1450–1457 (2015). https://doi.org/10.1039/C4TA04785K

Article  Google Scholar 

R. Kumari, M. Mamta, R. Kumar, Y. Singh, V.N. Singh, 24% efficient, simple ZnSe/Sb2 Se3 Heterojunction solar cell: an analysis of PV characteristics and defects. ACS Omega 8(1), 1632–1642 (2023). https://doi.org/10.1021/acsomega.2c07211

Article  Google Scholar 

Dong, W., et al. (2018) Wide band gap phase change material tuned visible photonics. arXiv:1808.06459v2, Aug. 2018, https://doi.org/10.1002/adfm.201806181.

K.M. Islam, R. Synowicki, T. Ismael, I. Oguntoye, N. Grinalds, M.D. Escarra, In-plane and out-of-plane optical properties of monolayer, few-layer, and thin-film MoS2 from 190 to 1700 nm and Their application in photonic device design. Adv Photonics Res 2(5), 2000180 (2021). https://doi.org/10.1002/adpr.202000180

Article  Google Scholar 

Sabeti, M., Zad, H. A. (Dec. 2018) Effect of annealing treatment on the structural, optical and magnetic properties of ZnSe thin films grown by spray pyrolysis. arXiv preprint arXiv:1812.06549, Dec. 2018, [Online]. Available: http://arxiv.org/abs/1812.06549

M. Dadashbeik, D. Fathi, M. Eskandari, Design and simulation of perovskite solar cells based on graphene and TiO2/graphene nanocomposite as electron transport layer. Sol. Energy 207, 917–924 (2020). https://doi.org/10.1016/j.solener.2020.06.102

留言 (0)

沒有登入
gif