ML-enhanced peroxisome capacity enables compartmentalization of multienzyme pathway

Heinig, U., Gutensohn, M., Dudareva, N. & Aharoni, A. The challenges of cellular compartmentalization in plant metabolic engineering. Curr. Opin. Biotechnol. 24, 239–246 (2013).

Article  CAS  PubMed  Google Scholar 

Lazarow, P. B. Rat liver peroxisomes catalyze the β oxidation of fatty acids. J. Biol. Chem. 253, 1522–1528 (1978).

Article  CAS  PubMed  Google Scholar 

Keller, G. A., Gould, S., Deluca, M. & Subramani, S. Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl Acad. Sci. USA 84, 3264–3268 (1987).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayashi, M. et al. Functional transformation of plant peroxisomes. Cell Biochem. Biophys. 32, 295–304 (2000).

Article  CAS  PubMed  Google Scholar 

Fung, K. & Clayton, C. Recognition of a peroxisomal tripeptide entry signal by the glycosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 45, 261–264 (1991).

Article  CAS  PubMed  Google Scholar 

Kiel, J. A. K. W., Hilbrands, R. E., Bovenberg, R. A. L. & Veenhuis, M. Isolation of Penicillium chrysogenum PEX1 and PEX6 encoding AAA proteins involved in peroxisome biogenesis. Appl. Microbiol. Biotechnol. 54, 238–242 (2000).

Article  CAS  PubMed  Google Scholar 

Purdue, P. E. & Lazarow, P. B.Peroxisome biogenesis. Annu. Rev. Cell Dev. Biol. 17, 701–752 (2001).

Article  CAS  PubMed  Google Scholar 

DeLoache, W. C., Russ, Z. N. & Dueber, J. E. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat. Commun. 7, 11152 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dusséaux, S., Wajn, W. T., Liu, Y., Ignea, C. & Kampranis, S. C. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc. Natl Acad. Sci. USA 117, 31789–31799 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Grewal, P. S., Samson, J. A., Baker, J. J., Choi, B. & Dueber, J. E. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat. Chem. Biol. 17, 96–103 (2021).

Article  CAS  PubMed  Google Scholar 

Choi, B. H., Kang, H. J., Kim, S. C. & Lee, P. C. Organelle engineering in yeast: enhanced production of protopanaxadiol through manipulation of peroxisome proliferation in Saccharomyces cerevisiae. Microorganisms 10, 650 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sheng, J., Stevens, J. & Feng, X. Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci. Rep. 6, 26884 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies, M. E., Tsyplenkov, D. & Martin, V. J. J. Engineering yeast for de novo synthesis of the insect repellent nepetalactone. ACS Synth. Biol. 10, 2896–2903 (2021).

Article  CAS  PubMed  Google Scholar 

Gerke, J. et al. Production of the fragrance geraniol in peroxisomes of a product-tolerant baker’s yeast. Front. Bioeng. Biotechnol. 8, 582052 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Erdmann, R. & Blobel, G. Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J. Cell Biol. 128, 509–523 (1995).

Article  CAS  PubMed  Google Scholar 

Deb, R. & Nagotu, S.The nexus between peroxisome abundance and chronological ageing in Saccharomyces cerevisiae. Biogerontology 24, 81–97 (2022).

Article  PubMed  Google Scholar 

Huber, A., Koch, J., Kragler, F., Brocard, C. & Hartig, A. A subtle interplay between three Pex11 proteins shapes de novo formation and fission of peroxisomes. Traffic 13, 157–167 (2012).

Article  CAS  PubMed  Google Scholar 

Krikken, A. M., Veenhuis, M. & van der Klei, I. J. Hansenula polymorpha pex11 cells are affected in peroxisome retention. FEBS J. 276, 1429–1439 (2009).

Article  CAS  PubMed  Google Scholar 

Greenhalgh, J. C., Fahlberg, S. A., Pfleger, B. F. & Romero, P. A. Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production. Nat. Commun. 12, 5825 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukherjee, M., Blair, R. H. & Wang, Z. Q. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Metab. Eng. 74, 139–149 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, S. et al. Massive computational acceleration by using neural networks to emulate mechanism-based biological models. Nat. Commun. 10, 4354 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radivojević, T., Costello, Z., Workman, K. & Garcia Martin, H. A machine learning automated recommendation tool for synthetic biology. Nat. Commun. 11, 4879 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Daniels, K. G. et al. Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning. Science 378, 1194–1200 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, N., Wang, S., Lu, J., Ouyang, X. & You, L. Collective colony growth is optimized by branching pattern formation in Pseudomonas aeruginosa. Mol. Syst. Biol. 17, e10089 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, W. & Viljoen, A. M. Geraniol—a review of a commercially important fragrance material. S. Afr. J. Bot. 76, 643–651 (2010).

Article  CAS  Google Scholar 

Rubat, S. et al. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase. FEMS Yeast Res. 17, fox032 (2017).

Article  Google Scholar 

Zhao, J. et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb. Cell Fact. 16, 17 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Ignea, C., Pontini, M., Maffei, M. E., Makris, A. M. & Kampranis, S. C. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth. Biol. 3, 298–306 (2014).

Article  CAS  PubMed  Google Scholar 

Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986 (2015).

Article  CAS  PubMed  Google Scholar 

van Roermund, C. W. T., Tabak, H. F., van den Berg, M., Wanders, R. J. A. & Hettema, E. H. Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J. Cell Biol. 150, 489–

留言 (0)

沒有登入
gif