Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. https://doi.org/10.1016/S1470-2045(10)70218-7.
Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metabol. 2012;16(2):153–66. https://doi.org/10.1016/j.cmet.2012.06.011.
Johns N, Stephens NA, Fearon KC. Muscle wasting in cancer. Int J Biochem Cell Biol. 2013;45(10):2215–29. https://doi.org/10.1016/j.biocel.2013.05.032.
Article CAS PubMed Google Scholar
Argilés JM, Moore-Carrasco R, Fuster G, Busquets S, López-Soriano FJ. Cancer cachexia: the molecular mechanisms. Int J Biochem Cell Biol. 2003;35(4):405–9. https://doi.org/10.1016/s1357-2725(02)00251-0.
Cabrera AR, Deaver JW, Lim S, Morena da Silva F, Schrems ER, Saling LW, Tsitkanou S, Rosa-Caldwell ME, Wiggs MP, Washington TA, Greene NP. Females display relatively preserved muscle quality compared with males during the onset and early stages of C26-induced cancer cachexia. J Appl Physiol (Bethesda Md: 1985). 2023;135(3):655–72. https://doi.org/10.1152/japplphysiol.00196.2023.
Article PubMed Central CAS Google Scholar
Saha S, Singh PK, Roy P, Kakar SS. Cardiac Cachexia: unaddressed aspect in Cancer patients. Cells. 2022;11(6):990. https://doi.org/10.3390/cells11060990.
Article PubMed Central CAS PubMed Google Scholar
Kelm NQ, Straughn AR, Kakar SS. Withaferin a attenuates ovarian cancer-induced cardiac cachexia. PLoS ONE. 2020;15(7):e0236680. https://doi.org/10.1371/journal.pone.0236680.
Article PubMed Central CAS PubMed Google Scholar
Straughn AR, Kelm NQ, Kakar SS. Withaferin A and Ovarian Cancer Antagonistically regulate skeletal muscle Mass. Front cell Dev Biology. 2021;9:636498. https://doi.org/10.3389/fcell.2021.636498.
Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A, Zhang L, Hanson AD, Conner BP, Rougas J, Pribluda VS. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. 2004;7(2):115–22. https://doi.org/10.1007/s10456-004-1026-3.
Article CAS PubMed Google Scholar
Mohanty I, Arya DS, Dinda A, Talwar KK, Joshi S, Gupta SK. Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic Clin Pharmacol Toxicol. 2004;94(4):184–90. https://doi.org/10.1111/j.1742-7843.2004.pto940405.x.
Article CAS PubMed Google Scholar
Gupta SK, Mohanty I, Talwar KK, Dinda A, Joshi S, Bansal P, Saxena A, Arya DS. Cardioprotection from ischemia and reperfusion injury by Withania somnifera: a hemodynamic, biochemical and histopathological assessment. Mol Cell Biochem. 2004;260(1–2):39–47. https://doi.org/10.1023/b:mcbi.0000026051.16803.03.
Straughn AR, Kakar SS. Withaferin a ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. J Ovarian Res. 2019;12(1):115. https://doi.org/10.1186/s13048-019-0586-1.
Article PubMed Central CAS PubMed Google Scholar
Callaway CS, Mouchantat LM, Bitler BG, Bonetto A. Mechanisms of Ovarian Cancer-Associated Cachexia. Endocrinology. 2023;165(1):bqad176. https://doi.org/10.1210/endocr/bqad176.
Article CAS PubMed Google Scholar
Hweidi IM, Al-Omari AK, Rababa MJ, Al-Obeisat SM, Hayajneh AA. Cardiac cachexia among patients with chronic heart failure: a systematic review. Nurs Forum. 2021;56(4):916–24. https://doi.org/10.1111/nuf.12623.
Nogueira-Ferreira R, Sousa-Nunes F, Leite-Moreira A, Moreira-Costa L, Vitorino R, Lara Santos L, Moreira-Gonçalves D, Ferreira R. Cancer- and cardiac-induced cachexia: same fate through different inflammatory mediators? Inflamm Research: Official J Eur Histamine Res Soc … et al ]. 2022;71(7–8):771–83. https://doi.org/10.1007/s00011-022-01586-y.
Tichy L, Parry TL. The pathophysiology of cancer-mediated cardiac cachexia and novel treatment strategies: a narrative review. Cancer Med. 2023;12(17):17706–17. https://doi.org/10.1002/cam4.6388.
Article PubMed Central CAS PubMed Google Scholar
Vemuri V, Kratholm N, Nagarajan D, Cathey D, Abdelbaset-Ismail A, Tan Y, Straughn A, Cai L, Huang J, Kakar SS. Withaferin A as a potential therapeutic target for the treatment of angiotensin II-Induced Cardiac Cachexia. Cells. 2024;13(9):783. https://doi.org/10.3390/cells13090783.
Article PubMed Central CAS PubMed Google Scholar
Bjornstad P, Karger AB, Maahs DM. Measured GFR in routine clinical practice-the Promise of dried blood spots. Adv Chronic Kidney Dis. 2018;25(1):76–83. https://doi.org/10.1053/j.ackd.2017.09.003.
Article PubMed Central PubMed Google Scholar
Anders HJ. Of inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. J Am Soc Nephrology: JASN. 2016;27(9):2564–75. https://doi.org/10.1681/ASN.2016020177.
Article PubMed Central CAS Google Scholar
Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992;356(6372):768–74. https://doi.org/10.1038/356768a0.
Article CAS PubMed Google Scholar
Lemos DR, Mcmurdo M, Karaca G, Wilflingseder J, Leaf IA, Gupta N, Miyoshi T, Susa K, Johnson BG, Soliman K, Wang G, Morizane R, Bonventre JV, Duffield JS. Interleukin-1β activates a MYC-Dependent metabolic switch in kidney stromal cells necessary for Progressive Tubulointerstitial Fibrosis. Ovid Technologies (Wolters Kluwer Health; 2018. https://doi.org/10.1681/asn.2017121283.
Guma M, Ronacher L, Liu-Bryan R, Takai S, Karin M, Corr M. Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum. 2009;60(12):3642–50. https://doi.org/10.1002/art.24959.
Article PubMed Central CAS PubMed Google Scholar
Dainichi T, Matsumoto R, Mostafa A, Kabashima K. Immune Control by TRAF6-Mediated pathways of epithelial cells in the EIME (epithelial Immune Microenvironment). Front Media SA. 2019. https://doi.org/10.3389/fimmu.2019.01107.
Ramseyer VD, Garvin JL. Tumor necrosis factor-α: regulation of renal function and blood pressure. Am J Physiol - Ren Physiol. 2013;304(10):1231–42. https://doi.org/10.1152/ajprenal.00557.2012.
Yoon K, Jung EJ, Lee SR, Kim J, Choi Y, Lee SY. TRAF6 deficiency promotes TNF-induced cell death through inactivation of GSK3β. Cell Death Differ. 2008;15(4):730–8. https://doi.org/10.1038/sj.cdd.4402304.
Article CAS PubMed Google Scholar
Kim SI, Choi ME. TGF-β-activated kinase-1: new insights into the mechanism of TGF-β signaling and kidney disease. Kidney Res Clin Pract. 2012;31(2):94–105. https://doi.org/10.1016/j.krcp.2012.04.322.
Article PubMed Central PubMed Google Scholar
Gu Y, Liu X, Huang X, Yu X, Lan H. Diverse role of TGF-β in kidney disease. Front Media SA. 2020. https://doi.org/10.3389/fcell.2020.00123.
Strelau J, Böttner M, Lingor P, Suter-Crazzolara C, Galter D, Jaszai J, Sullivan A, Schober A, Krieglstein K, Unsicker K. GDF-15/MIC-1 a novel member of the TGF-beta superfamily. J Neural Transm Suppl. 2000;60:273–6. https://doi.org/10.1007/978-3-7091-6301-6_18.
Lerner L, Tao J, Liu Q, Nicoletti R, Feng B, Krieger B, Mazsa E, Siddiquee Z, Wang R, Huang L, Shen L, Lin J, Vigano A, Chiu MI, Weng Z, Winston W, Weiler S, Gyuris J. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J cachexia Sarcopenia Muscle. 2016;7(4):467–82. https://doi.org/10.1002/jcsm.12077.
留言 (0)