Gray T. Brief History of Animals in Space 1998 [ https://www.nasa.gov/history/a-brief-history-of-animals-in-space/
Proshchina A, Gulimova V, Kharlamova A, Krivova Y, Besova N, Berdiev R et al. Reproduction and the Early Development of vertebrates in Space: problems, results, opportunities. Life (Basel). 2021;11(2).
Sciorio R, Aiello R, Janssens R. Considerations on staffing levels for a modern assisted reproductive laboratory. JBRA Assist Reprod. 2023;27(1):120–30.
PubMed PubMed Central Google Scholar
Eshre GG, De los Santos MJ, Apter S, Coticchio G, Debrock S, Lundin K et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31(4):685-6.
Practice Committees of the American Society for Reproductive M. The Society for Reproductive B, technologists. Electronic address aao. Comprehensive guidance for human embryology, andrology, and endocrinology laboratories: management and operations: a committee opinion. Fertil Steril. 2022;117(6):1183–202.
Eshre SIGoE. The Vienna consensus: report of an expert meeting on the development of art laboratory performance indicators. Hum Reprod Open. 2017;2017(2):hox011.
Ho JR, Paulson RJ. Modified natural cycle in in vitro fertilization. Fertil Steril. 2017;108(4):572–6.
McIntyre ABR, Rizzardi L, Yu AM, Alexander N, Rosen GL, Botkin DJ, et al. Nanopore sequencing in microgravity. NPJ Microgravity. 2016;2:16035.
Article PubMed PubMed Central Google Scholar
Rizzardi LF, Kunz H, Rubins K, Chouker A, Quiriarte H, Sams C, et al. Evaluation of techniques for performing cellular isolation and preservation during microgravity conditions. NPJ Microgravity. 2016;2:16025.
Article PubMed PubMed Central Google Scholar
Ronca AE, Baker ES, Bavendam TG, Beck KD, Miller VM, Tash JS, et al. Effects of sex and gender on adaptations to space: reproductive health. J Womens Health (Larchmt). 2014;23(11):967–74.
WHO. WHO Laboratory Manual for the Examination and Processing of Human Semen. 6 ed. Geneva2021. 276 p.
Zhang X, Khimji I, Gurkan UA, Safaee H, Catalano PN, Keles HO, et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip. 2011;11(15):2535–40.
Article PubMed CAS Google Scholar
Mathyk BA, Tabetah M, Karim R, Zaksas V, Kim J, Anu RI, et al. Spaceflight induces changes in gene expression profiles linked to insulin and estrogen. Commun Biol. 2024;7(1):692.
Article PubMed PubMed Central CAS Google Scholar
Mathyk B, Imudia AN, Quaas AM, Halicigil C, Karouia F, Avci P, et al. Understanding how space travel affects the female reproductive system to the Moon and beyond. Npj Women’s Health. 2024;2(1):20.
Rydze R, Schutt A, Gibbons W, Nodler J. Gravity and embryo development. Curr Obstet Gynecol Rep. 2017;6(1):51–4.
Ikeuchi T, Sasaki S, Umemoto Y, Kubota Y, Kubota H, Kaneko T, et al. Human sperm motility in a microgravity environment. Reprod Med Biol. 2005;4(2):161–8.
Article PubMed PubMed Central Google Scholar
Kojima Y, Sasaki S, Kubota Y, Ikeuchi T, Hayashi Y, Kohri K. Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fertil Steril. 2000;74(6):1142–7.
Article PubMed CAS Google Scholar
Boada M, Perez-Poch A, Ballester M, Garcia-Monclus S, Gonzalez DV, Garcia S, et al. Microgravity effects on frozen human sperm samples. J Assist Reprod Genet. 2020;37(9):2249–57.
Article PubMed PubMed Central CAS Google Scholar
Gonzalez-Marin C, Gosalvez J, Roy R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int J Mol Sci. 2012;13(11):14026–52.
Article PubMed PubMed Central CAS Google Scholar
Li HY, Zhang H, Miao GY, Xie Y, Sun C, Di CX, et al. Simulated microgravity conditions and carbon ion irradiation induce spermatogenic cell apoptosis and sperm DNA damage. Biomed Environ Sci. 2013;26(9):726–34.
Ahrari K, Omolaoye TS, Goswami N, Alsuwaidi H, du Plessis SS. Effects of space flight on sperm function and integrity: a systematic review. Front Physiol. 2022;13:904375.
Article PubMed PubMed Central Google Scholar
Crawford-Young SJ. Effects of microgravity on cell cytoskeleton and embryogenesis. Int J Dev Biol. 2006;50(2–3):183–91.
Wu C, Guo X, Wang F, Li X, Tian XC, Li L, et al. Simulated microgravity compromises mouse oocyte maturation by disrupting meiotic spindle organization and inducing cytoplasmic blebbing. PLoS ONE. 2011;6(7):e22214.
Article PubMed PubMed Central CAS Google Scholar
Miglietta S, Cristiano L, Espinola MSB, Masiello MG, Micara G, Battaglione E et al. Effects of simulated Microgravity in Vitro on Human Metaphase II oocytes: an Electron Microscopy-based study. Cells. 2023;12(10).
Michaletti A, Gioia M, Tarantino U, Zolla L. Effects of microgravity on osteoblast mitochondria: a proteomic and metabolomics profile. Sci Rep. 2017;7(1):15376.
Article PubMed PubMed Central Google Scholar
Jiang M, Wang H, Liu Z, Lin L, Wang L, Xie M, et al. Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-kappaB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J. 2020;34(8):10835–49.
Article PubMed CAS Google Scholar
Zhang S, Zheng D, Wu Y, Lin W, Chen Z, Meng L, et al. Simulated microgravity using a Rotary Culture System compromises the in Vitro Development of Mouse Preantral follicles. PLoS ONE. 2016;11(3):e0151062.
Article PubMed PubMed Central Google Scholar
Cheng K, Feng X, Yang C, Ma C, Niu S, Jia L, et al. Simulated microgravity reduces quality of ovarian follicles and oocytes by disrupting communications of follicle cells. NPJ Microgravity. 2023;9(1):7.
Article PubMed PubMed Central CAS Google Scholar
Sventitskaya MA, Ogneva IV. Reorganization of the mouse oocyte’ cytoskeleton after cultivation under simulated weightlessness. Life Sci Space Res (Amst). 2024;40:8–18.
Kujjo LL, Ronningen R, Ross P, Pereira RJ, Rodriguez R, Beyhan Z, et al. RAD51 plays a crucial role in halting cell death program induced by ionizing radiation in bovine oocytes. Biol Reprod. 2012;86(3):76.
Bosch E, Espinos JJ, Fabregues F, Fontes J, Garcia-Velasco J, Llacer J, et al. ALWAYS ICSI? A SWOT analysis. J Assist Reprod Genet. 2020;37(9):2081–92.
Article PubMed PubMed Central CAS Google Scholar
Alikani MER. The success of ICSIA and the tough road to automation. Reprod Biomed Online. 2023;47(3):103244.
Lei X, Cao Y, Zhang Y, Duan E. Advances of mammalian Reproduction and Embryonic Development under Microgravity. In: Duan E, Long M, editors. Life Science in Space: experiments on Board the SJ-10 Recoverable Satellite. Singapore: Springer Singapore; 2019. pp. 281–315.
Serova LV, Denisova LA. The effect of weightlessness on the reproductive function of mammals. Physiologist. 1982;25(6):S9–12.
Jung S, Bowers SD, Willarda ST. Simulated microgravity influences bovine oocyte in vitro fertilization and preimplantation embryo development. J Anim Veterinary Adv. 2009;8:1807–14.
Turner JL. Micro-11. Spaceflight-Altered Motility Activation and Fertility-Dependent Responses in Sperm 2023 [ https://www.nasa.gov/mission/station/research-explorer/investigation/?#id=1922
Swain JE. Is there an optimal pH for culture media used in clinical IVF? Hum Reprod Update. 2012;18(3):333–9.
Article PubMed CAS Google Scholar
Schenker E, Forkheim K. Mammalian mice embryo early development in weightlessness environment on STS 80 space flight. Isr Aerosp Med Inst Rep. 1998;5.
Ma B-H, Cao Y-J, Zheng W-B, Lu J-R, Kuang H-b, Lei X-H, et al. Real-time micrography of mouse preimplantation embryos in an Orbit Module on SJ-8 Satellite. Microgravity Sci Technol. 2008;20(2):127–36.
留言 (0)