Infrared spectroscopy as a new approach for early fabry disease screening: a pilot study

Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. https://doi.org/10.1186/1750-1172-5-30

Article  PubMed  PubMed Central  Google Scholar 

Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P. Life expectancy and cause of death in males and females with fabry disease: findings from the Fabry Registry. Genet Sci. 2009;11(11):790–6.

Google Scholar 

Desnick RJ. Fabry disease: α-galactosidase A deficiency. Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease. Academic; 2020. pp. 575–87. https://doi.org/10.1016/B978-0-12-813955-4.00042-8

Elstein D, Schachamorov E, Beeri R, Altarescu G. X-inactivation in fabry disease. Gene. 2012;505(2):266–8. https://doi.org/10.1016/j.gene.2012.06.01

Article  PubMed  CAS  Google Scholar 

Curiati MA, Aranda CS, Kyosen SO, et al. The challenge of diagnosis and indication for treatment in Fabry Disease. J Inborn Errors Metabolism Screen. 2017;5. https://doi.org/10.1177/2326409816685735

Germain DP, Levade T, Hachulla E, Knebelmann B, Lacombe D, Seguin VL, Nguyen K, Noël E, Rabès JP. Challenging the traditional approach for interpreting genetic variants: lessons from fabry disease. Clin Genet. 2022;101(4):390–402. https://doi.org/10.1111/cge.14102

Article  PubMed  CAS  Google Scholar 

De Bruyne S, Speeckaert MM, Delanghe JR. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit Rev Clin Lab Sci. 2018;55(1):1–20. https://doi.org/10.1080/10408363.2017.1414142

Article  PubMed  CAS  Google Scholar 

Tolstik E, et al. CARS imaging advances early diagnosis of cardiac manifestation of fabry disease. Int J Mol Sci. 2022;23(10):5345. https://doi.org/10.3390/ijms23105345

Article  PubMed  PubMed Central  CAS  Google Scholar 

Su KY, Lee WL. Fourier transform infrared spectroscopy as a cancer screening and diagnostic tool: a review and prospects. Cancers. 2020;12(1):115. https://doi.org/10.3390/cancers12010115

Article  PubMed  PubMed Central  CAS  Google Scholar 

Butler HJ, Brennan PM, Cameron JM, et al. Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer. Nat Commun. 2019;10:4501. https://doi.org/10.1038/s41467-019-12527-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nascimento MH, Marcarini WD, Folli GS, da Silva Filho WG, Barbosa LL, et al. Noninvasive diagnostic for COVID-19 from saliva biofluid via FTIR spectroscopy and multivariate analysis. Anal Chem. 2022;94(5):2425–33. https://doi.org/10.1021/acs.analchem.1c04162

Article  PubMed  CAS  Google Scholar 

Barauna VG, Singh MN, Barbosa LL, Marcarini WD, Vassallo PF, et al. Ultrarapid on-site detection of SARS-CoV-2 infection using simple ATR-FTIR spectroscopy and an analysis algorithm: high sensitivity and specificity. Anal Chem. 2021;93(5):2950–8. https://doi.org/10.1021/acs.analchem.0c04608

Article  PubMed  CAS  Google Scholar 

Nogueira MS, Leal LB, Marcarini WD, et al. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy and machine learning. Sci Rep. 2021;11(1):15409. https://doi.org/10.1038/s41598-021-93511-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leal LB, Nogueira MS, Mageski JGA, et al. Diagnosis of systemic diseases using infrared spectroscopy: detection of iron overload in plasma—preliminary study. Biol Trace Elem Res. 2021;199:3737–51. https://doi.org/10.1007/s12011-020-02510-3

Article  PubMed  CAS  Google Scholar 

Pinto GC, Leal LB, Magalhães NC, Pereira MF, Vassallo PF, Pereira TM, et al. The potential of FT-IR spectroscopy for improving healthcare in sepsis–An animal model study. Photodiagnosis Photodyn Ther. 2021;34:102312. https://doi.org/10.1016/j.pdpdt.2021.102312

Article  PubMed  CAS  Google Scholar 

Faria RA, Leal LB, Thebit MM, et al. Role of Fourier Transform Infrared Spectroscopy as a Screening Approach for breast Cancer. Appl Spectrosc. 2023;77(4):405–17. https://doi.org/10.1177/00037028231156194

Article  PubMed  CAS  Google Scholar 

Lacombe C, Untereiner V, Gobinet C, Zater M, Sockalingum GD, Garnotel R. Rapid screening of classic galactosemia patients: a proof-of-concept study using high-throughput FTIR analysis of plasma. Analyst. 2015;140(7):2280–6. https://doi.org/10.1039/C4AN01942C

Article  PubMed  CAS  Google Scholar 

Silva CAB, Barreto FC, dos Reis MA, Moura Junior JA, Cruz CMS. Targeted screening of fabry disease in male hemodialysis patients in Brazil highlights importance of family screening. Nephron. 2016;134(4):221–30. https://doi.org/10.1159/000448740

Article  PubMed  CAS  Google Scholar 

Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, Ponzone A, Desnick RJ. High incidence of later-onset fabry disease revealed by newborn screening. Am J Hum Genet. 2006;79(1):31–40. https://doi.org/10.1086/504601

Article  PubMed  PubMed Central  CAS  Google Scholar 

Inoue T, Hattori K, Ihara K, Ishii A, Nakamura K, Hirose S. Newborn screening for fabry disease in Japan: prevalence and genotypes of fabry disease in a pilot study. J Hum Genet. 2013;58(8):548–52. https://doi.org/10.1038/jhg.2013.48

Article  PubMed  CAS  Google Scholar 

Arends M, Wijburg FA, Wanner C, Vaz FM, van Kuilenburg ABP, Hughes DA, et al. Favourable effect of early versus late start of enzyme replacement therapy on plasma globotriaosylsphingosine levels in men with classical fabry disease. Mol Genet Metab. 2017;121(2):157–61. https://doi.org/10.1016/j.ymgme.2017.05.001

Article  PubMed  CAS  Google Scholar 

Nowak A, Mechtler TP, Desnick RJ, Kasper DC. Plasma LysoGb3: a useful biomarker for the diagnosis and treatment of fabry disease heterozygotes. Mol Genet Metab. 2017;120(1–2):57–61. https://doi.org/10.1016/j.ymgme.2016.10.006

Article  PubMed  CAS  Google Scholar 

Niemann M, Rolfs A, Störk S, Bijnens B, Breunig F, Beer M, Ertl G, Wanner C, Weidemann F. Gene mutations versus clinically relevant phenotypes: lyso-Gb3 defines fabry disease. Circ Cardiovasc Genet. 2014;7(1):8–16. https://doi.org/10.1161/CIRCGENETICS.113.000249

Article  PubMed  CAS  Google Scholar 

Rombach SM, Dekker N, Bouwman MG, Linthorst GE, Zwinderman AH, Wijburg FA, Kuiper S, Vd Bergh Weerman MA, et al. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of fabry disease. Biochim Biophys Acta. 2010;1802:741–8. https://doi.org/10.1016/j.bbadis.2010.05.003

Article  PubMed  CAS  Google Scholar 

Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of fabry disease. Proc Natl Acad Sci U S A. 2008;105(8):2812–7. https://doi.org/10.1073/pnas.0712309105

Article  PubMed  PubMed Central  Google Scholar 

Smid BE, van der Tol L, Biegstraaten M, Linthorst GE, Hollak CE, Poorthuis BJ. Plasma globotriaosylsphingosine in relation to phenotypes of fabry disease. J Med Genet. 2015;52(4):262–8. https://doi.org/10.1136/jmedgenet-2014-102872

Article  PubMed  CAS  Google Scholar 

Ferraz MJ, Marques ARA, Appelman MD, Verhoek M, Strijland A, Mirzaian M, et al. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases. FEBS Lett. 2016;590(6):716–25. https://doi.org/10.1002/1873-3468.12104

Article  PubMed  CAS  Google Scholar 

Xiao K, Lu D, Hoepfner J, Santer L, Gupta S, Pfanne A, et al. Circulating microRNAs in fabry disease. Sci Rep. 2019;9(1):15277. https://doi.org/10.1038/s41598-019-51805-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nowak A, Haddad G, Kistler AD, Nlandu-Khodo S, Beuschlein F, Wüthrich RP, et al. Circular RNA-based biomarkers in blood of patients with fabry disease and related phenotypes. J Med Genet. 2022;59(3):279–86. https://doi.org/10.1136/jmedgenet-2020-107086

留言 (0)

沒有登入
gif