Simultaneous or sequential kidney-liver transplantation in primary hyperoxaluria

Milliner DS, McGregor TL, Thompson A et al (2020) End points for clinical trials in primary hyperoxaluria. Clin J Am Soc Nephrol CJASN 15:1056–1065. https://doi.org/10.2215/CJN.13821119

Article  PubMed  CAS  Google Scholar 

Harambat J, van Stralen KJ, Espinosa L et al (2012) Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin J Am Soc Nephrol CJASN 7:458–465. https://doi.org/10.2215/CJN.07430711

Article  PubMed  Google Scholar 

Cochat P, Rumsby G (2013) Primary hyperoxaluria. N Engl J Med 369:649–658. https://doi.org/10.1056/NEJMra1301564

Article  PubMed  CAS  Google Scholar 

Pszczolinski R, Acquaviva C, Berrahal I et al (2024) Primary hyperoxaluria in adults and children: a nationwide cohort highlights a persistent diagnostic delay. Clin Kidney. https://doi.org/10.1093/ckj/sfae099

Article  Google Scholar 

Cochat P, Groothoff J (2013) Primary hyperoxaluria type 1: practical and ethical issues. Pediatr Nephrol Berl Ger 28:2273–2281. https://doi.org/10.1007/s00467-013-2444-5

Article  Google Scholar 

Cochat P, Hulton S-A, Acquaviva C et al (2012) Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 27:1729–1736. https://doi.org/10.1093/ndt/gfs078

Article  CAS  Google Scholar 

Monico CG, Rossetti S, Olson JB, Milliner DS (2005) Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int 67:1704–1709. https://doi.org/10.1111/j.1523-1755.2005.00267.x

Article  PubMed  CAS  Google Scholar 

Metry EL, van Dijk LMM, Peters-Sengers H et al (2021) Transplantation outcomes in patients with primary hyperoxaluria: a systematic review. Pediatr Nephrol Berl Ger 36:2217–2226. https://doi.org/10.1007/s00467-021-05043-6

Article  Google Scholar 

Bacchetta J, Lieske JC (2022) Primary hyperoxaluria type 1: novel therapies at a glance. Clin Kidney J 15:i17–i22. https://doi.org/10.1093/ckj/sfab245

Article  PubMed  PubMed Central  CAS  Google Scholar 

Garrelfs SF, Frishberg Y, Hulton SA et al (2021) Lumasiran, an RNAi therapeutic for primary Hyperoxaluria type 1. N Engl J Med 384:1216–1226. https://doi.org/10.1056/NEJMoa2021712

Article  PubMed  CAS  Google Scholar 

Hayes W, Sas DJ, Magen D et al (2023) Efficacy and safety of lumasiran for infants and young children with primary hyperoxaluria type 1: 12-month analysis of the phase 3 ILLUMINATE-B trial. Pediatr Nephrol 38:1075–1086. https://doi.org/10.1007/s00467-022-05684-1

Article  PubMed  Google Scholar 

Michael M, Groothoff JW, Shasha-Lavsky H et al (2023) Lumasiran for advanced primary hyperoxaluria type 1: phase 3 ILLUMINATE-C Trial. Am J Kidney Dis Off J Natl Kidney Found 81:145-155.e1. https://doi.org/10.1053/j.ajkd.2022.05.012

Article  CAS  Google Scholar 

Horoub R, Shamsaeefar A, Dehghani M et al (2021) Liver transplant for primary hyperoxaluria type 1: results of sequential, combined liver and kidney, and preemptive liver transplant. Exp Clin Transplant Off J Middle East Soc Organ Transplant 19:445–449. https://doi.org/10.6002/ect.2019.0150

Article  Google Scholar 

Büscher R, Büscher AK, Cetiner M et al (2015) Combined liver and kidney transplantation and kidney after liver transplantation in children: indication, postoperative outcome, and long-term results. Pediatr Transplant 19:858–865. https://doi.org/10.1111/petr.12595

Article  PubMed  Google Scholar 

Brinkert F, Ganschow R, Helmke K et al (2009) Transplantation procedures in children with primary hyperoxaluria type 1: outcome and longitudinal growth. Transplantation 87:1415–1421. https://doi.org/10.1097/TP.0b013e3181a27939

Article  PubMed  Google Scholar 

Groothoff JW, Metry E, Deesker L et al (2023) Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol 19:194–211. https://doi.org/10.1038/s41581-022-00661-1

Article  PubMed  Google Scholar 

Opelz G, Margreiter R, Döhler B (2002) Prolongation of long-term kidney graft survival by a simultaneous liver transplant: the liver does it, and the heart does it too. Transplantation 74:1390–1394. https://doi.org/10.1097/00007890-200211270-00008

Article  PubMed  Google Scholar 

Grenda R, Kaliciński P (2018) Combined and sequential liver-kidney transplantation in children. Pediatr Nephrol Berl Ger 33:2227–2237. https://doi.org/10.1007/s00467-017-3880-4

Article  Google Scholar 

Simpson N, Cho YW, Cicciarelli JC et al (2006) Comparison of renal allograft outcomes in combined liver-kidney transplantation versus subsequent kidney transplantation in liver transplant recipients: analysis of UNOS Database. Transplantation 82:1298–1303. https://doi.org/10.1097/01.tp.0000241104.58576.e6

Article  PubMed  Google Scholar 

Rana A, Robles S, Russo MJ et al (2008) The combined organ effect: protection against rejection? Ann Surg 248:871–879. https://doi.org/10.1097/SLA.0b013e31817fc2b8

Article  PubMed  Google Scholar 

Kavukçu S, Türkmen M, Soylu A et al (2008) Combined liver-kidney transplantation and follow-up in primary hyperoxaluria treatment: report of three cases. Transplant Proc 40:316–319. https://doi.org/10.1016/j.transproceed.2007.11.003

Article  PubMed  Google Scholar 

Devresse A, Cochat P, Godefroid N, Kanaan N (2020) Transplantation for primary hyperoxaluria type 1: designing new strategies in the era of promising therapeutic perspectives. Kidney Int Rep 5:2136–2145. https://doi.org/10.1016/j.ekir.2020.09.022

Article  PubMed  PubMed Central  Google Scholar 

Mizusawa Y, Parnham AP, Falk MC et al (1997) Potential for bilateral nephrectomy to reduce oxalate release after combined liver and kidney transplantation for primary hyperoxaluria type 1. Clin Transplant 11:361–365

Article  PubMed  CAS  Google Scholar 

Villani V, Gupta N, Elias N et al (2017) Bilateral native nephrectomy reduces systemic oxalate level after combined liver-kidney transplant: a case report. Pediatr Transplant. https://doi.org/10.1111/petr.12901

Article  PubMed  Google Scholar 

Lee E, Ramos-Gonzalez G, Rodig N et al (2018) Bilateral native nephrectomy to reduce oxalate stores in children at the time of combined liver-kidney transplantation for primary hyperoxaluria type 1. Pediatr Nephrol Berl Ger 33:881–887. https://doi.org/10.1007/s00467-017-3855-5

Article  Google Scholar 

Leal R, Costa J, Santos T et al (2017) Combined liver and kidney transplantation in two women with primary hyperoxaluria: different roads led to different outcomes. Nefrol Engl Ed 37:433–434. https://doi.org/10.1016/j.nefro.2016.10.006

Article  Google Scholar 

Bergstralh EJ, Monico CG, Lieske JC et al (2010) Transplantation outcomes in primary hyperoxaluria. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 10:2493–2501. https://doi.org/10.1111/j.1600-6143.2010.03271.x

Article  CAS  Google Scholar 

Cornell LD, Amer H, Viehman JK et al (2021) Posttransplant recurrence of calcium oxalate crystals in patients with primary hyperoxaluria: incidence, risk factors, and effect on renal allograft function. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. https://doi.org/10.1111/ajt.16732

Article  Google Scholar 

留言 (0)

沒有登入
gif