Kidney injury: the spleno-renal connection and splenic tyrosine kinase

Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5:606–616

CAS  Google Scholar 

Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol. 2019;4.

Bohnsack JF, Brown EJ (1986) The role of the spleen in resistance to infection. Annu Rev Med 37:49–59

CAS  Google Scholar 

Cooper N, Ghanima W, Hill QA, Nicolson PLR, Markovtsov V, Kessler C. Recent advances in understanding spleen tyrosine kinase (SYK) in human biology and disease, with a focus on fostamatinib. Platelets. 2023;34.

Bronte V, Pittet MJ (2013) The spleen in local and systemic regulation of immunity. Immunity 39:806–818

CAS  PubMed Central  Google Scholar 

Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VL (2000) Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today 21:148–154

CAS  Google Scholar 

Ackermann JA, Nys J, Schweighoffer E, McCleary S, Smithers N, Tybulewicz VLJ (2015) Syk tyrosine kinase is critical for B cell antibody responses and memory B cell survival. J Immunol (Baltimore, Md : 1950) 194:4650–4656

CAS  Google Scholar 

Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C et al (1997) A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med 186:1027–1039

CAS  PubMed Central  Google Scholar 

Sada K, Takano T, Yanagi S, Yamamura H (2001) Structure and function of Syk protein-tyrosine kinase. J Biochem 130:177–186

CAS  Google Scholar 

Mócsai A, Ruland J, Tybulewicz VLJ (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10:387–402

PubMed Central  Google Scholar 

Krisenko MO, Geahlen RL (2015) Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochem Biophys Acta 1853:254–263

CAS  Google Scholar 

Deng GM, Kyttaris VC, Tsokos GC. Targeting Syk in autoimmune rheumatic diseases. Front Immunol. 2016;7.

Levey AS, James MT (2017) Acute kidney injury. Ann Intern Med 167:ITC65-IRC79

Google Scholar 

Koyner JL, Cerdá J, Goldstein SL, Jaber BL, Liu KD, Shea JA et al (2014) The daily burden of acute kidney injury: a survey of U.S. nephrologists on World Kidney Day. Am J Kidney Dis 64:394–401

Google Scholar 

Zhao YL, Yang T, Tong Y, Wang J, Luan JH, Jiao ZB et al (2017) Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater 138:72–82

CAS  Google Scholar 

Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM et al (2018) Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14:607–625

CAS  Google Scholar 

Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev Dis primers. 2021;7.

Andres-Hernando A, Okamura K, Bhargava R, Kiekhaefer CM, Soranno D, Kirkbride-Romeo LA et al (2017) Circulating IL-6 upregulates IL-10 production in splenic CD4+ T cells and limits acute kidney injury-induced lung inflammation. Kidney Int 91:1057–1069

CAS  Google Scholar 

Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S et al (2013) Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol 24:1451–1460

CAS  PubMed Central  Google Scholar 

Gigliotti JC, Okusa MD (2014) The spleen: the forgotten organ in acute kidney injury of critical illness. Nephron Clin Pract 127:153–157

CAS  Google Scholar 

Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

CAS  Google Scholar 

Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA et al (2006) Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203:1623–1628

CAS  PubMed Central  Google Scholar 

Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117:289–296

CAS  PubMed Central  Google Scholar 

Rosas-Ballina M, Olofsson PS, Ochani M, Valdes-Ferrer SI, Levine YA, Reardon C et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101

CAS  PubMed Central  Google Scholar 

Inoue T, Abe C, Sung SSJ, Moscalu S, Jankowski J, Huang L et al (2016) Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin Investig 126:1939–1952

PubMed Central  Google Scholar 

Tanaka S, Abe C, Abbott SBG, Zheng S, Yamaoka Y, Lipsey JE et al (2021) Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci USA 118:e2021758118–e2021758118

CAS  PubMed Central  Google Scholar 

Addorisio ME, Imperato GH, de Vos AF, Forti S, Goldstein RS, Pavlov VA et al (2019) Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear. Bioelectron Med 5:4

PubMed Central  Google Scholar 

Andrés-Hernando A, Altmann C, Ahuja N, Lanaspa MA, Nemenoff R, He Z, et al. Splenectomy exacerbates lung injury after ischemic acute kidney injury in mice. American journal of physiology Renal Physiol. 2011;301.

Kinsey GR (2017) The spleen as a bidirectional signal transducer in acute kidney injury. Kidney Int 91:1001–1003

CAS  Google Scholar 

Tang TT, Wang B, Wu M, Li ZL, Feng Y, Cao JY, et al. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci Adv. 2020;6.

Cao Y, Xu Q, Liu C, Fu C (2020) Role of spleen-derived CD11b+Gr-1+ cells in sepsis-induced acute kidney injury. Clin Invest Med 43:E24–E34

CAS  Google Scholar 

Hill P, Shukla D, Tran MG, Aragones J, Cook HT, Carmeliet P et al (2008) Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 19:39–46

CAS  PubMed Central  Google Scholar 

Wang Z, Schley G, Turkoglu G, Burzlaff N, Amann KU, Willam C et al (2012) The protective effect of prolyl-hydroxylase inhibition against renal ischaemia requires application prior to ischaemia but is superior to EPO treatment. Nephrol Dial Transplant 27:929–936

CAS  Google Scholar 

Wilson S, Mone P, Jankauskas SS, Gambardella J, Santulli G (2021) Chronic kidney disease: definition, updated epidemiology, staging, and mechanisms of increased cardiovascular risk. J Clin Hypertens (Greenwich) 23:831–834

CAS  Google Scholar 

Spoto B, Zoccali C (2013) Spleen IL-10, a key player in obesity-driven renal risk. Nephrol Dial Transplant 28:1061–1064

Google Scholar 

Gotoh K, Fujiwara K, Anai M, Okamoto M, Masaki T, Kakuma T, et al. Role of spleen-derived IL-10 in prevention of systemic low-grade inflammation by obesity. 2017;64:375–378.

Duta F, Ulanova M, Seidel D, Puttagunta L, Musat-Marcu S, Harrod KS et al (2006) Differential expression of spleen tyrosine kinase Syk isoforms in tissues: effects of the microbial flora. Histochem Cell Biol 126:495–505

CAS  Google Scholar 

Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier J (2004) B cell antigen receptor signaling 101. Mol Immunol 41:599–613

Google Scholar 

Lai KN, Leung JCK, Tang SCW. Recent advances in the understanding and management of IgA nephropathy. F1000Research. 2016;5.

McAdoo S, Tam FWK (2018) Role of the spleen tyrosine kinase pathway in driving inflammation in IgA nephropathy. Semin Nephrol 38:496–503

CAS  PubMed Central  Google Scholar 

McAdoo SP, Bhangal G, Page T, Cook HT, Pusey CD, Tam FWK (2015) Correlation of disease activity in proliferative glomerulonephritis with glomerular spleen tyrosine kinase expression. Kidney Int 88:52–60

CAS  PubMed Central  Google Scholar 

Fava A, Fenaroli P, Rosenberg A, Bagnasco S, Li J, Monroy-Trujillo J et al (2022) History of proliferative glomerulonephritis predicts end stage kidney disease in pure membranous lupus nephritis. Rheumatology (Oxford) 61:2483–2493

Google Scholar 

Ikhlas M, Anjum F (2023) Diffuse proliferative glomerulonephritis. StatPearls

Google Scholar 

Baker M, Chaichian Y, Genovese M, Derebail V, Rao P, Chatham W et al (2020) Phase II, randomised, double-blind, multicentre study evaluating the safety and efficacy of filgotinib and lanraplenib in patients with lupus membranous nephropathy. Open 6:1490–1490

Google Scholar 

Hiroyoshi T, Tsuchida M, Uchiyama K, Fujikawa K, Komatsu T, Kanaoka Y et al (2012) Splenectomy protects the kidneys against ischemic reperfusion injury in the rat. Transpl Immunol 27:8–11

CAS  Google Scholar 

Nagata Y, Fujimoto M, Nakamura K, Isoyama N, Matsumura M, Fujikawa K et al (2016) Anti-TNF-alpha agent infliximab and splenectomy are protective against renal ischemia-reperfusion injury. Transplantation 100:1675–1682

CAS  Google Scholar 

Gao Y, Kang K, Liu YS, Li NN, Han QY, Liu HT et al (2021) Mechanisms of renal-splenic axis involvement in acute kidney injury mediated by the alpha7nAChR-NF-kappaB signaling pathway. Inflammation 44:746–757

CAS  Google Scholar 

Shi X, Li J, Han Y, Wang J, Li Q, Zheng Y et al (2022) The alpha7 nicotinic acetylcholine receptor agonist PNU-282987 ameliorates sepsis-induced acute kidney injury through CD4+CD25+ regulatory T cells in rats. Bosn J Basic Med Sci 22:882–893

CAS  PubMed Central  Google Scholar 

Ma TKW, McAdoo SP, Tam FWK (2016) Spleen tyrosine kinase: a crucial player and potential therapeutic target in renal disease. Nephron 133:261–269

CAS  Google Scholar 

Liu D, Mamorska-Dyga A. Syk inhibitors in clinical development for hematological malignancies. J Hematol Oncol. 2017;10.

留言 (0)

沒有登入
gif