LRRK2 is not required for lysozyme expression in Paneth cells

Russo, I., Bubacco, L. & Greggio, E. LRRK2 as a target for modulating immune system responses. Neurobiol. Dis. 169, 105724 (2022).

Article  CAS  PubMed  Google Scholar 

Wehkamp, J. & Stange, E. F. An update review on the Paneth cell as key to ileal Crohn’s disease. Front. Immunol. 11, 646 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Q. et al. Commensal bacteria direct selective cargo sorting to promote symbiosis. Nat. Immunol. 16, 918–926 (2015).

Article  CAS  PubMed  Google Scholar 

Yin, X. et al. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat. Methods 11, 106–112 (2014).

Article  CAS  PubMed  Google Scholar 

Gardet, A. et al. LRRK2 is involved in the IFN-γ response and host response to pathogens. J. Immunol. 185, 5577–5585 (2010).

Article  CAS  PubMed  Google Scholar 

Farin, H. F. et al. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-γ. J. Exp. Med. 211, 1393–1405 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dikovskaya, D. et al. Regulation of leucine-rich repeat kinase 2 by inflammation and IL-4. Preprint at bioRxiv https://doi.org/10.1101/2024.04.29.591170 (2024).

Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, H.-S., Lobbestael, E., Vermeire, S., Sabino, J. & Cleynen, I. Inflammatory bowel disease and Parkinson’s disease: common pathophysiological links. Gut 70, 408–417 (2021).

CAS  PubMed  Google Scholar 

Parisiadou, L. et al. Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J. Neurosci. 29, 13971–13980 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lis, P. et al. Development of phospho-specific Rab protein antibodies to monitor in vivo activity of the LRRK2 Parkinson’s disease kinase. Biochem. J. 475, 1–22 (2018).

Article  CAS  PubMed  Google Scholar 

Dzamko, N. et al. The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS ONE 7, e39132 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

James, O. J. et al. IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat. Commun. 12, 4290 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

Article  CAS  PubMed  Google Scholar 

Porter, R. J. et al. Colonic epithelial cathelicidin (LL-37) expression intensity is associated with progression of colorectal cancer and presence of CD8+ T cell infiltrate. J. Pathol. Clin. Res. 7, 495–506 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brice, D. P. et al. Interleukin-27 regulates the function of the gastrointestinal epithelial barrier in a human tissue-derived organoid model. Biology 11, 427 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif