Causal role of 731 immune cells in diabetic nephropathy: a bi-directional two-sample Mendelian randomization study

Reutens AT (2013) Epidemiology of diabetic kidney disease. Med Clin North Am 97:1–18

Article  PubMed  Google Scholar 

Breyer MD, Susztak K (2016) The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov 15:568–588

Article  PubMed  PubMed Central  Google Scholar 

Fineberg D, Jandeleit-Dahm KAM, Cooper ME (2013) Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol 9:713–723

Article  PubMed  Google Scholar 

Guiteras R, Sola A, Flaquer M, Manonelles A, Hotter G, Cruzado JM (2019) Exploring macrophage cell therapy on diabetic kidney disease. J Cell Mol Medi 23:841–851

Article  Google Scholar 

Bending JJ, Lobo-Yeo A, Vergani D, Viberti G (1988) Proteinuria and activated T-lymphocytes in diabetic nephropathy. Diabetes 37:507–511

Article  PubMed  Google Scholar 

Xiao X, Ma B, Dong B et al (2009) Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice. J Autoimmun 32:85–93

Article  PubMed  Google Scholar 

Okoń K, Stachura J (2007) Increased mast cell density in renal interstitium is correlated with relative interstitial volume, serum creatinine and urea especially in diabetic nephropathy but also in primary glomerulonephritis. Pol J Pathol 58:193–197

PubMed  Google Scholar 

Galkina E, Ley K (2006) Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol 17:368–377

Article  PubMed  Google Scholar 

Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23:R89–R98

Article  PubMed  PubMed Central  Google Scholar 

Timpson NJ, Wade KH, Smith GD (2012) Mendelian randomization: application to cardiovascular disease. Curr Hypertens Rep 14:29–37

Article  PubMed  Google Scholar 

Jiang W, Xu C, Du C et al (2022) Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics 12:324–339

Article  PubMed  PubMed Central  Google Scholar 

Orrù V, Steri M, Sidore C et al (2020) Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet 52:1036–1045

Article  PubMed  PubMed Central  Google Scholar 

Sidore C, Busonero F, Maschio A et al (2015) Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet 47:1272–1281

Article  PubMed  PubMed Central  Google Scholar 

Yu X-H, Yang Y-Q, Cao R-R, Bo L, Lei S-F (2021) The causal role of gut microbiota in development of osteoarthritis. Osteoarthr Cartil 29:1741–1750

Article  Google Scholar 

The 1000 Genomes Project Consortium, Auton A et al (2015) A global reference for human genetic variation. Nature 526:68–74

Article  Google Scholar 

Yavorska OO, Burgess S (2017) MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol 46:1734–1739

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Small DS, Thompson SG (2017) A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res 26:2333–2355

Article  PubMed  Google Scholar 

Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314

Article  PubMed  PubMed Central  Google Scholar 

Hartwig FP, Davey Smith G, Bowden J (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 46:1985–1998

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389

Article  PubMed  PubMed Central  Google Scholar 

Verbanck M, Chen C-Y, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698

Article  PubMed  PubMed Central  Google Scholar 

Oguiza A, Recio C, Lazaro I, Mallavia B, Blanco J, Egido J, Gomez-Guerrero C (2015) Peptide-based inhibition of IκB kinase/nuclear factor-κB pathway protects against diabetes-associated nephropathy and atherosclerosis in a mouse model of type 1 diabetes. Diabetologia 58:1656–1667

Article  PubMed  Google Scholar 

Ma KL, Zhang Y, Liu J, Wu Y, Hu ZB, Ruan XZ, Liu BC (2014) Establishment of an inflamed animal model of diabetic nephropathy. Int J Biol Sci 10:149–159

Article  PubMed  PubMed Central  Google Scholar 

Sassy-Prigent C, Heudes D, Mandet C et al (2000) Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 49:466–475

Article  PubMed  Google Scholar 

Vella AT, Mitchell T, Groth B et al (1997) CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J Immunol 158:4714–4720

Article  PubMed  Google Scholar 

Li Y, Jin L, Yan J, Zhang H, Zhang R, Hu C (2021) CD28 genetic variants increase susceptibility to diabetic kidney disease in Chinese patients with type 2 diabetes: a cross-sectional case control study. Mediat Inflamm 1–10:2021

Google Scholar 

Duran-Salgado MB (2014) Diabetic nephropathy and inflammation. WJD 5:393

Article  PubMed  PubMed Central  Google Scholar 

Agrawal S, Gupta S (2011) TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J Clin Immunol 31:89–98

Article  PubMed  Google Scholar 

Navarro-González JF, Mora-Fernández C, De Fuentes MM, García-Pérez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7:327–340

Article  PubMed  Google Scholar 

Zhang N, Tai J, Qu Z et al (2016) Increased CD4+ CXCR5+ T follicular helper cells in diabetic nephropathy. Autoimmunity 49:405–413

Article  PubMed  Google Scholar 

Moon J-Y, Jeong K-H, Lee T-W, Ihm C-G, Lim SJ, Lee S-H (2012) Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol 35:164–174

Article  PubMed  Google Scholar 

Chen J, Liu Q, He J, Li Y (2022) Immune responses in diabetic nephropathy: pathogenic mechanisms and therapeutic target. Front Immunol 13:958790

Article  PubMed  PubMed Central  Google Scholar 

Kim H, Kim M, Lee H-Y, Park H-Y, Jhun H, Kim S (2021) Role of dendritic cell in diabetic nephropathy. IJMS 22:7554

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif