Targeting RAC1 might be a potential therapeutic strategy for diabetic kidney disease: a Mendelian randomization study

Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P, Susztak K (2023) Molecular pathways that drive diabetic kidney disease. J Clin Investig 133:e165654

Article  PubMed  Google Scholar 

Johansen KL, Chertow GM, Foley RN et al (2021) US Renal Data System 2020 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 77:A7–A8

Article  PubMed  Google Scholar 

Blazek O, Bakris GL (2023) Slowing the progression of diabetic kidney disease. Cells 12:1975

Article  PubMed  Google Scholar 

Danta CC, Boa AN, Bhandari S, Sathyapalan T, Xu SZ (2021) Recent advances in drug discovery for diabetic kidney disease. Expert Opin Drug Discov 16:447–461

Article  PubMed  Google Scholar 

Albakr RB, Sridhar VS, Cherney DZI (2023) Novel therapies in diabetic kidney disease and risk of hyperkalemia: a review of the evidence from clinical trials. Am J Kidney Dis 82:737–742

Article  PubMed  Google Scholar 

Zoccali C, Vanholder R, Massy ZA et al (2017) The systemic nature of CKD. Nat Rev Nephrol 13:344–358

Article  PubMed  Google Scholar 

Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12:2032–2045

Article  PubMed  Google Scholar 

Steichen C, Hervé C, Hauet T, Bourmeyster N (2022) Rho GTPases in kidney physiology and diseases. Small GTPases 13:141–161

Article  PubMed  Google Scholar 

Mende CW, Samarakoon R, Higgins PJ (2023) Mineralocorticoid receptor-associated mechanisms in diabetic kidney disease and clinical significance of mineralocorticoid receptor antagonists. Am J Nephrol 54:50–61

Article  PubMed  Google Scholar 

Tung CW, Hsu YC, Shih YH, Chang PJ, Lin CL (2018) Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton) 23:32–37

Article  PubMed  Google Scholar 

Yoshida S, Ishizawa K, Ayuzawa N et al (2014) Local mineralocorticoid receptor activation and the role of Rac1 in obesity-related diabetic kidney disease. Nephron Exp Nephrol 126:16–24

Article  PubMed  Google Scholar 

Azarova I, Klyosova E, Polonikov A (2023) Single nucleotide polymorphisms of the RAC1 gene as novel susceptibility markers for neuropathy and microvascular complications in type 2 diabetes. Biomedicines 11:981

Article  PubMed  Google Scholar 

Walsh L, Reilly JF, Cornwall C et al (2021) Safety and efficacy of GFB-887, a TRPC5 channel inhibitor, in patients with focal segmental glomerulosclerosis, treatment-resistant minimal change disease, or diabetic nephropathy: TRACTION-2 trial design. Kidney Int Rep 6:2575–2584

Article  PubMed  Google Scholar 

Aman A, Slob EAW, Ward J et al (2022) Investigating the potential impact of PCSK9-inhibitors on mood disorders using eQTL-based Mendelian randomization. PLoS ONE 17:e0279381

Article  PubMed  Google Scholar 

Nica AC, Dermitzakis ET (2013) Expression quantitative trait loci: present and future. Philos Trans R Soc Lond B Biol Sci 368:20120362

Article  PubMed  Google Scholar 

Cao Y, Yang Y, Hu Q, Wei G (2023) Identification of potential drug targets for rheumatoid arthritis from genetic insights: a Mendelian randomization study. J Transl Med 21:616

Article  PubMed  Google Scholar 

GTEx Consortium (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369:1318–1330

Article  Google Scholar 

Võsa U, Claringbould A, Westra HJ et al (2021) Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet 53:1300–1310

Article  PubMed  Google Scholar 

van Zuydam NR, Ahlqvist E, Sandholm N et al (2018) A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67:1414–1427

Article  PubMed  Google Scholar 

Teumer A, Li Y, Ghasemi S et al (2019) Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat Commun 10:4130

Article  PubMed  Google Scholar 

Elsworth B, Lyon M, Alexander T et al (2020) The MRC IEU OpenGWAS data infrastructure. bioRxiv. https://doi.org/10.1101/2020.08.10.244293

Article  Google Scholar 

Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698

Article  PubMed  Google Scholar 

Burgess S, Dudbridge F, Thompson SG (2016) Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med 35:1880–1906

Article  PubMed  Google Scholar 

Azarova I, Klyosova E, Polonikov A (2022) Association between RAC1 gene variation, redox homeostasis and type 2 diabetes mellitus. Eur J Clin Investig 52:e13792

Article  Google Scholar 

Hirohama D, Kawarazaki W, Nishimoto M et al (2020) PGI2Analog attenuates salt-induced renal injury through the inhibition of inflammation and Rac1-MR activation. Int J Mol Sci 21:4433

Article  PubMed  Google Scholar 

Lv Z, Hu M, Fan M et al (2018) Podocyte-specific Rac1 deficiency ameliorates podocyte damage and proteinuria in STZ-induced diabetic nephropathy in mice. Cell Death Dis 9:342

Article  PubMed  Google Scholar 

Apte M, Khan MS, Bangar N, Gvalani A, Naz H, Tupe RS (2023) Crosstalk between aldosterone and glycation through Rac-1 induces diabetic nephropathy. ACS Omega 8:37264–37273

Article  PubMed  Google Scholar 

Ying C, Zhou Z, Dai J et al (2022) Activation of the NLRP3 inflammasome by RAC1 mediates a new mechanism in diabetic nephropathy. Inflamm Res 71:191–204

Article  PubMed  Google Scholar 

Ying C, Dai J, Fan G et al (2021) Ras-related C3 botulinum toxin substrate 1 combining with the mixed lineage kinase 3-mitogen-activated protein kinase 7-c-Jun N-terminal kinase signaling module accelerates diabetic nephropathy. Front Physiol 12:679166

Article  PubMed  Google Scholar 

Xiong D, Hu W, Han X, Cai Y (2023) Rhein inhibited ferroptosis and EMT to attenuate diabetic nephropathy by regulating the Rac1/NOX1/β-catenin axis. Front Biosci (Landmark Ed) 28:100

Article  PubMed  Google Scholar 

García-Carro C, Vergara A, Bermejo S et al (2021) How to assess diabetic kidney disease progression? From albuminuria to GFR. J Clin Med 10:2505

Article  PubMed  Google Scholar 

Li X, Zhang Y, Xing X et al (2023) Podocyte injury of diabetic nephropathy: novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 168:115670

Article  PubMed  Google Scholar 

Wan X, Lee MS, Zhou W (2016) Dosage-dependent role of Rac1 in podocyte injury. Am J Physiol Renal Physiol 310:F777–F784

Article  PubMed  Google Scholar 

Robins R, Baldwin C, Aoudjit L, Côté JF, Gupta IR, Takano T (2017) Rac1 activation in podocytes induces the spectrum of nephrotic syndrome. Kidney Int 92:349–364

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif