Csanády L, Vergani P, Gadsby DC (2019) Structure, gating, and regulation of the CFTR anion channel. Physiol Rev 99:707–738
Lei L, Traore S, Romano Ibarra GS, Karp PH, Rehman T, Meyerholz DK et al (2023) CFTR-rich ionocytes mediate chloride absorption across airway epithelia. J Clin Invest 133:e171268
Article PubMed PubMed Central CAS Google Scholar
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073
Article PubMed CAS Google Scholar
Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW et al (2016) From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 27:424–433
Article PubMed PubMed Central CAS Google Scholar
Infield DT, Strickland KM, Gaggar A, McCarty NA (2021) The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 153:e202012625
Article PubMed PubMed Central CAS Google Scholar
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S (2018) Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 150:539–570
Article PubMed PubMed Central CAS Google Scholar
Thomas C, Tampé R (2020) Structural and mechanistic principles of ABC transporters. Annu Rev Biochem 89:605–636
Article PubMed CAS Google Scholar
Sorum B, Czégé D, Csanády L (2015) Timing of CFTR pore opening and structure of its transition state. Cell 163:724–733
Article PubMed CAS Google Scholar
Levring J, Terry DS, Kilic Z, Fitzgerald G, Blanchard SC, Chen J (2023) CFTR function, pathology and pharmacology at single-molecule resolution. Nature 616:606–614
Article PubMed PubMed Central CAS Google Scholar
Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T et al (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 106:18825–18830
Article PubMed PubMed Central Google Scholar
Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672
Article PubMed PubMed Central CAS Google Scholar
Eckford PD, Li C, Ramjeesingh M, Bear CE (2012) Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem 287:36639–36649
Article PubMed PubMed Central CAS Google Scholar
Jih KY, Hwang TC (2013) Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci U S A 110:4404–4409
Article PubMed PubMed Central CAS Google Scholar
Kopeikin Z, Yuksek Z, Yang H, Bompadre S (2014) Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels. J Cyst Fibros 13:508–514
Article PubMed CAS Google Scholar
Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JPJ et al (2012) Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros 11:237–245
Article PubMed CAS Google Scholar
Wang W, Hong JS, Rab A, Sorscher EJ, Kirk KL (2016) Robust stimulation of W1282X-CFTR Channel activity by a combination of Allosteric modulators. PLoS ONE 11:e0152232
Article PubMed PubMed Central Google Scholar
Haggie PM, Phuan PW, Tan JA, Xu H, Avramescu RG, Perdomo D et al (2017) Correctors and potentiators rescue function of the truncated W1282X-Cystic Fibrosis Transmembrane Regulator (CFTR) translation product. J Biol Chem 292:771–785
Article PubMed CAS Google Scholar
Byrnes L, Xu Y, Qiu X, Hall J, West G (2018) Sites associated with Kalydeco binding on human cystic fibrosis transmembrane Conductance Regulator revealed by Hydrogen/Deuterium exchange. Sci Rep 8:4664
Article PubMed PubMed Central Google Scholar
Laselva O, Qureshi Z, Zeng ZW, Petrotchenko EV, Ramjeesingh M, Hamilton CM et al (2021) Identification of binding sites for ivacaftor on the cystic fibrosis transmembrane conductance regulator. iScience 24:102542
Article PubMed PubMed Central CAS Google Scholar
Liu F, Zhang Z, Levit A, Levring J, Touhara KK, Shoichet BK et al (2019) Structural identification of a hotspot on CFTR for potentiation. Science 364:1184–1188
Article PubMed PubMed Central CAS Google Scholar
Yeh H-I, Qiu L, Sohma Y, Conrath K, Zou X, Hwang TC (2019) Identifying the molecular target sites for CFTR potentiators GLPG1837 and VX-770. J Gen Physiol 151:912–928
Article PubMed PubMed Central CAS Google Scholar
Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E et al (2017) Tezacaftor-Ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med 377:2024–2035
Article PubMed PubMed Central CAS Google Scholar
Hwang TC, Braakman I, van der Sluijs P, Callebaut I (2023) Structure basis of CFTR folding, function and pharmacology. J Cyst Fibros 22(Suppl 1):S5–S11
Article PubMed CAS Google Scholar
Mornon J-P, Hoffmann B, Jonic S, Lehn P, Callebaut I (2015) Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 72:1377–1403
Article PubMed CAS Google Scholar
El Hiani Y, Linsdell P (2015) Functional architecture of the cytoplasmic entrance to the cystic fibrosis transmembrane conductance Regulator chloride channel pore. J Biol Chem 290:15855–15865
Article PubMed PubMed Central Google Scholar
El Hiani Y, Negoda A, Linsdell P (2016) Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore. Cell Mol Life Sci 73:1917–1925
Li M, Cowley E, El Hiani Y, Linsdell P (2018) Functional organization of cytoplasmic portals controlling access to the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore. J Biol Chem 293:5649–5658
Article PubMed PubMed Central CAS Google Scholar
Zhang Z, Liu F, Chen J (2017) Conformational changes of CFTR upon phosphorylation and ATP binding. Cell 170:483–491
Article PubMed CAS Google Scholar
Zhang Z, Liu F, Chen J (2018) Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc Natl Acad Sci U S A 115:12757–12762
留言 (0)