DDX3X dynamics, glioblastoma's genetic landscape, therapeutic advances, and autophagic interplay

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/CAAC.21660.

Article  PubMed  Google Scholar 

Koshy M, Villano JL, Dolecek TA, et al. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol. 2012;107(1):207–12. https://doi.org/10.1007/S11060-011-0738-7/FIGURES/2.

Article  PubMed  Google Scholar 

Munshi A, Jalali R. Therapy for glioma: Indian perspective. Indian J Cancer. 2009;46(2):127–31. https://doi.org/10.4103/0019-509X.49150.

Article  CAS  PubMed  Google Scholar 

Bansal N, Dawande P, Shukla S, Acharya S. Effect of lifestyle and dietary factors in the development of brain tumors. J Family Med Prim Care. 2020;9(10):5200. https://doi.org/10.4103/JFMPC.JFMPC_640_19.

Article  PubMed  PubMed Central  Google Scholar 

Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res. 2022;41(1). https://doi.org/10.1186/S13046-022-02349-7

Zhao M, van Straten D, Broekman MLD, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics. 2020;10(3):1355–72. https://doi.org/10.7150/THNO.38147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parsons DW, Jones S, Zhang X, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science (1979). 2008;321(5897):1807–12. https://doi.org/10.1126/science.1164382

Park AK, Kim P, Ballester LY, Esquenazi Y, Zhao Z. Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro Oncol. 2019;21(1):59–70. https://doi.org/10.1093/NEUONC/NOY120.

Article  CAS  PubMed  Google Scholar 

Wang Y, Chen W, Shi Y, et al. Imposing Phase II and Phase III clinical trials of targeted drugs for glioblastoma: current status and progress. Front Oncol. 2021;11. https://doi.org/10.3389/fonc.2021.719623

Ohgaki H, Dessen P, Jourde B, et al. genetic pathways to glioblastoma. Cancer Res. 2004;64(19):6892–9. https://doi.org/10.1158/0008-5472.CAN-04-1337.

Article  CAS  PubMed  Google Scholar 

Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53. https://doi.org/10.2353/ajpath.2007.070011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tso CL, Freije WA, Day A, et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res. 2006;66(1):159–67. https://doi.org/10.1158/0008-5472.CAN-05-0077.

Article  CAS  PubMed  Google Scholar 

Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73. https://doi.org/10.1016/j.ccr.2006.02.019.

Article  CAS  PubMed  Google Scholar 

Hovinga KE, McCrea HJ, Brennan C, et al. EGFR amplification and classical subtype are associated with a poor response to bevacizumab in recurrent glioblastoma. J Neurooncol. 2019;142(2):337–45. https://doi.org/10.1007/s11060-019-03102-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 2019;21(Supplement_5), v1–v100. https://doi.org/10.1093/neuonc/noz150

Hart MG, Garside R, Rogers G, Stein K, Grant R. Temozolomide for high grade glioma. Cochrane Database Syst Rev. Published online April 30, 2013. https://doi.org/10.1002/14651858.CD007415.pub2

Agarwala SS, Kirkwood JM. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist. 2000;5(2):144–51. https://doi.org/10.1634/theoncologist.5-2-144.

Article  CAS  PubMed  Google Scholar 

Arora A, Somasundaram K. Glioblastoma vs temozolomide: can the red queen race be won? Cancer Biol Ther. 2019;20(8):1083–90. https://doi.org/10.1080/15384047.2019.1599662.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu C, Lin Q, Liu C, et al. Bioequivalence study of 20-mg and 100-mg temozolomide capsules (TOZ309 and Temodal®) in glioma patients in China. Cancer Chemother Pharmacol. 2020;86(6):793–801. https://doi.org/10.1007/s00280-020-04175-0.

Article  CAS  PubMed  Google Scholar 

Moody C, Wheelhouse R. The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals. 2014;7(7):797–838. https://doi.org/10.3390/ph7070797.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scopus preview-Scopus-Document details-Pharmacokinetics of 3-methyl-(triazen-1-yl)imidazole-4-carboximide following administration of temozolomide to patients with advanced cancer. Accessed August 16, 2023. https://www.scopus.com/record/display.uri?eid=2-s2.0-0031426782&origin=inward&txGid=e4d26e3abd1a32469e7cbded210ced44

Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. https://doi.org/10.1056/NEJMoa043330.

Article  CAS  PubMed  Google Scholar 

Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3(3):198–210. https://doi.org/10.1016/j.gendis.2016.04.007.

Article  PubMed  PubMed Central  Google Scholar 

Wick W, Platten M. Understanding and targeting alkylator resistance in glioblastoma. Cancer Discov. 2014;4(10):1120–2. https://doi.org/10.1158/2159-8290.CD-14-0918.

Article  CAS  PubMed  Google Scholar 

Feldheim J, Kessler AF, Monoranu CM, Ernestus RI, Löhr M, Hagemann C. Changes of O6-Methylguanine DNA methyltransferase (MGMT) promoter methylation in glioblastoma relapse—a meta-analysis type literature review. Cancers (Basel). 2019;11(12):1837. https://doi.org/10.3390/cancers11121837.

Article  CAS  PubMed  Google Scholar 

Butler M, Pongor L, Su YT, et al. MGMT status as a clinical biomarker in glioblastoma. Trends Cancer. 2020;6(5):380–91. https://doi.org/10.1016/j.trecan.2020.02.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Qiu X, Feng J, Liu Y. MGMT promoter methylation is a strong prognostic factor for survival after progression in high-grade gliomas. Chin Neurosurg J. 2024;10(1):24. https://doi.org/10.1186/s41016-024-00375-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivera AL, Pelloski CE, Gilbert MR, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 2010;12(2):116–21. https://doi.org/10.1093/neuonc/nop020.

Article  CAS  PubMed  Google Scholar 

Xie Q, Mittal S, Berens ME. Targeting adaptive glioblastoma: an overview of proliferation and invasion. Neuro Oncol. 2014;16(12):1575–84. https://doi.org/10.1093/neuonc/nou147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahman MA, Gras Navarro A, Brekke J, et al. Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT promoter and prolongs animal survival. Br J Cancer. 2019;121(7), 545–55. https://doi.org/10.1038/s41416-019-0551-1

Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462. https://doi.org/10.1016/j.cell.2013.09.034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sepúlveda-Sánchez JM, Vaz MÁ, Balañá C, et al. Phase II trial of dacomitinib, a pan–human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro Oncol. 2017;19(11):1522–31. https://doi.org/10.1093/NEUONC/NOX105.

Article  PubMed  PubMed Central  Google Scholar 

Chen C, Cheng C dong, Wu H, et al. Osimertinib successfully co

留言 (0)

沒有登入
gif