Larsson L, Degens H, Li M, et al. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019;99:427; doi: https://doi.org/10.1152/physrev.00061.2017.
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48:601; doi: https://doi.org/10.1093/ageing/afz046
Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2022;13:86–99; doi: https://doi.org/10.1002/jcsm.12783
Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord 2017;16; doi: https://doi.org/10.1186/s40200-017-0302-x.
Coletta G, Phillips SM. An elusive consensus definition of sarcopenia impedes research and clinical treatment: A narrative review. Ageing Res. Rev. 2023, 86: 101883; doi: https://doi.org/10.1016/j.arr.2023.101883
Davinelli S, Corbi G, Scapagnini G. Frailty syndrome: A target for functional nutrients? Mech Ageing Dev 2021;195; doi: https://doi.org/10.1016/j.mad.2021.111441
Bloom I, Shand C, Cooper C, Robinson S, Baird J. Diet Quality and Sarcopenia in Older Adults: A Systematic Review. Nutrients 2018;10; doi: https://doi.org/10.1016/j.mad.2021.111441
Robinson S, Granic A, Cruz-Jentoft AJ, Sayer AA. The role of nutrition in the prevention of sarcopenia. Am J Clin Nutr 2023;118:852–864; doi: https://doi.org/10.1016/j.ajcnut.2023.08.015
Robinson SM, Reginster JY, Rizzoli R, et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr 2018;37:1121–1132; doi: https://doi.org/10.1016/j.clnu.2017.08.016.
Cesare MM, Felice F, Santini V, Di Stefano R. Antioxidants in Sport Sarcopenia. Nutrients 2020;12:1–20; doi: https://doi.org/10.3390/nu12092869
Coelho-Junior HJ, Calvani R, Azzolino D, et al. Protein Intake and Sarcopenia in Older Adults: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2022;19; doi: https://doi.org/10.3390/ijerph19148718
Gkekas NK, Anagnostis P, Paraschou V, et al. The effect of vitamin D plus protein supplementation on sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Maturitas 2021;145:56–63; doi: https://doi.org/10.1016/j.maturitas.2021.01.002
Nasimi N, Sohrabi Z, Nunes EA, et al. Whey Protein Supplementation with or without Vitamin D on Sarcopenia-Related Measures: A Systematic Review and Meta-Analysis. Adv Nutr 2023;14:762–773; doi: https://doi.org/10.1016/j.advnut.2023.05.011
Ali S, Corbi G, Medoro A, Intrieri M, Scapagnini G, Davinelli S. Relationship between monounsaturated fatty acids and sarcopenia: a systematic review and meta-analysis of observational studies. Aging Clin Exp Res 2023;35:1823–1834; doi: https://doi.org/10.1007/s40520-023-02465-0
Bird JK, Troesch B, Warnke I, Calder PC. The effect of long chain omega-3 polyunsaturated fatty acids on muscle mass and function in sarcopenia: A scoping systematic review and meta-analysis. Clin Nutr ESPEN 2021;46:73–86; doi: https://doi.org/10.1016/j.clnesp.2021.10.011
Wiedmer P, Jung T, Castro JP, et al. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev 2021;65; doi: https://doi.org/10.1016/j.arr.2020.101200
Pan L, Xie W, Fu X, et al. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp Gerontol 2021;154:111544; doi: https://doi.org/10.1016/j.exger.2021.111544
Meng SJ, Yu LJ. Oxidative Stress, Molecular Inflammation and Sarcopenia. Int J Mol Sci 2010;11:1509–1526; doi: https://doi.org/10.3390/ijms11041509
Fernando R, Drescher C, Nowotny K, Grune T, Castro JP. Impaired proteostasis during skeletal muscle aging. Free Radic Biol Med 2019;132:58–66; doi:https://doi.org/10.1016/j.freeradbiomed.2018.08.037
Ferri E, Marzetti E, Calvani R, Picca A, Cesari M, Arosio B. Role of Age-Related Mitochondrial Dysfunction in Sarcopenia. Int J Mol Sci; 2020;21:5236; doi: https://doi.org/10.3390/ijms21155236
Pacifici F, Della-Morte D, Piermarini F, et al. Prdx6 Plays a Main Role in the Crosstalk Between Aging and Metabolic Sarcopenia. Antioxidants (Basel) 2020;9:329; doi: https://doi.org/10.3390/antiox9040329.
Scicchitano BM, Pelosi L, Sica G, Musarò A. The physiopathologic role of oxidative stress in skeletal muscle. Mech Ageing Dev 2018;170:37–44; doi: https://doi.org/10.1016/j.mad.2017.08.009
Durazzo A, Lucarini M, Souto EB, et al. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res 2019;33:2221–2243; doi: https://doi.org/10.1002/ptr.6419
Salucci S, Falcieri E. Polyphenols and their potential role in preventing skeletal muscle atrophy. Nutr Res 2020;74:10–22; doi: https://doi.org/10.1016/j.nutres.2019.11.004
Nikawa T, Ulla A, Sakakibara I. Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021;26; doi: https://doi.org/10.3390/molecules26164887
Felice F, Cesare MM, Fredianelli L, et al. Effect of Tomato Peel Extract Grown under Drought Stress Condition in a Sarcopenia Model. Molecules 2022;27; doi: https://doi.org/10.3390/molecules27082563
Liao ZY, Chen JL, Xiao MH, et al. The effect of exercise, resveratrol or their combination on Sarcopenia in aged rats via regulation of AMPK/Sirt1 pathway. Exp Gerontol 2017;98:177–183; doi: https://doi.org/10.1016/j.exger.2017.08.032
Hosoda R, Nakashima R, Yano M, et al. Resveratrol, a SIRT1 activator, attenuates aging-associated alterations in skeletal muscle and heart in mice. J Pharmacol Sci 2023;152:112–122; doi: https://doi.org/10.1016/j.jphs.2023.04.001
Sirago G, Toniolo L, Crea E, Giacomello E. A short-term treatment with resveratrol improves the inflammatory conditions of Middle-aged mice skeletal muscles. Int J Food Sci Nutr 2022;73:630–637; doi:https://doi.org/10.1080/09637486.2022.2027889
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020;29:1619; doi: https://doi.org/10.1007/s10068-020-00816-5
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 2021;10:1–11; doi: https://doi.org/10.1186/s13643-021-01626-4
Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343; doi: https://doi.org/10.1136/bmj.d5928
Thorlund K, Imberger G, Johnston BC, et al. Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One 2012;7:e39471; doi: https://doi.org/10.1371/journal.pone.0039471
Aubertin-Leheudre M, Lord C, Khalil A, Dionne IJ. Six months of isoflavone supplement increases fat-free mass in obese-sarcopenic postmenopausal women: a randomized double-blind controlled trial. Eur J Clin Nutr 2007;61:1442–1444; doi: https://doi.org/10.1038/sj.ejcn.1602695
Mafi F, Biglari S, Afousi AG, Gaeini AA. Improvement in Skeletal Muscle Strength and Plasma Levels of Follistatin and Myostatin Induced by an 8-Week Resistance Training and Epicatechin Supplementation in Sarcopenic Older Adults. J Aging Phys Act 2019;27:384–391; doi: https://doi.org/10.1123/japa.2017-0389
Kim H, Suzuki T, Saito K, et al. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. Geriatr Gerontol Int 2013;13:458–465; doi:https://doi.org/10.1111/j.1447-0594.2012.00923.x
Tokuda Y, Mori H. Essential Amino Acid and Tea Catechin Supplementation after Resistance Exercise Improves Skeletal Muscle Mass in Older Adults with Sarcopenia: An Open-Label, Pilot, Randomized Controlled Trial. J Am Nutr Assoc 2023;42:255–262; doi:https://doi.org/10.1080/07315724.2022.2025546
Kwon IS, Park DS, Shin HC, Seok MG, Oh JK. Effects of marine oligomeric polyphenols on body composition and physical ability of elderly individuals with sarcopenia: a pilot study. Phys Act Nutr 2021;25:1–7; doi: https://doi.org/10.20463/pan.2021.0014
Munguia L, Rubio-Gayosso I, Ramirez-Sanchez I, et al. High flavonoid cocoa supplement ameliorates plasma oxidative stress and inflammation levelswhile improving mobility and quality of life in older subjects: A double-blind randomized clinical trial. Journals Gerontol - Ser A Biol Sci Med Sci 2019;74:1620–1627; doi: https://doi.org/10.1093/gerona/glz107
Chang SS, Chen LH, Huang KC, et al. Plant-based polyphenol rich protein supplementation attenuated skeletal muscle loss and lowered the LDL level via gut microbiota remodeling in Taiwan’s community-dwelling elderly. Food Funct 2023;14:9407–9418; doi: https://doi.org/10.1039/d3fo02766j
Guo HJ, Ye YL, Cao R, Yu TH, He Q. Association between Dietaiy Flavonoid Intake and the Likelihood of Frailty in Middle-Aged and Older Adults: A Population-Based Analysis from the National Health and Nutrition Examination Survey (NHANES). J Frailty Aging 2024;1–10; doi: https://doi.org/10.14283/jfa.2024.40
Mukai R, Matsui N, Fujikura Y, et al. Preventive effect of dietary quercetin on disuse muscle atrophy by targeting mitochondria in denervated mice. J Nutr Biochem 2016;31:67–76; doi: https://doi.org/10.1016/j.jnutbio.2016.02.001
留言 (0)