Osborn, J. W. & Foss, J. D. Renal nerves and long-term control of arterial pressure. Compr. Physiol. 7, 263–320 (2017).
Osborn, J. W., Tyshynsky, R. & Vulchanova, L. Function of renal nerves in kidney physiology and pathophysiology. Annu. Rev. Physiol. 83, 429–450 (2021).
Article CAS PubMed Google Scholar
Johns, E. J., Kopp, U. C. & DiBona, G. F. Neural control of renal function. Compr. Physiol. 1, 731–767 (2011).
Foss, J. D., Wainford, R. D., Engeland, W. C., Fink, G. D. & Osborn, J. W. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R112–R122 (2015).
Article CAS PubMed Google Scholar
Ong, J. et al. Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J. Neurophysiol. 122, 358–367 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zheng, H., Katsurada, K., Liu, X., Knuepfer, M. M. & Patel, K. P. Specific afferent renal denervation prevents reduction in neuronal nitric oxide synthase within the paraventricular nucleus in rats with chronic heart failure. Hypertension 72, 667–675 (2018).
Article CAS PubMed Google Scholar
Frame, A. A., Carmichael, C. Y., Kuwabara, J. T., Cunningham, J. T. & Wainford, R. D. Role of the afferent renal nerves in sodium homeostasis and blood pressure regulation in rats. Exp. Physiol. 104, 1306–1323 (2019).
Article CAS PubMed Google Scholar
Schlaich, M. P. et al. Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension 54, 1195–1201 (2009).
Article CAS PubMed Google Scholar
Rey-Garcia, J. & Townsend, R. R. Renal denervation: a review. Am. J. Kidney Dis. 80, 527–535 (2022).
Mountfort, K. et al. Catheter-based renal sympathetic denervation — long-term Symplicity™ renal denervation clinical evidence, new data and future perspectives. Interv. Cardiol. 8, 118–123 (2013).
Article PubMed PubMed Central Google Scholar
Kandzari, D. E. et al. The SPYRAL HTN Global Clinical Trial Program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am. Heart J. 171, 82–91 (2016).
Azizi, M. et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391, 2335–2345 (2018).
FDA. Premarket Approval (PMA) Symplicity Spyral® Renal Denervation System. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P220026 (2023).
FDA. Premarket Approval (PMA) Paradise® Ultrasound Renal Denervation System. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P220023 (2023).
Mancia, G. et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertension 41, 1874–2071 (2023).
Barbato, E. et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 44, 1313–1330 (2023).
Article CAS PubMed Google Scholar
Barbato, E. et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). EuroIntervention 18, 1227–1243 (2023).
PubMed PubMed Central Google Scholar
Schlaich, M. P., Sobotka, P. A., Krum, H., Lambert, E. & Esler, M. D. Renal sympathetic-nerve ablation for uncontrolled hypertension. N. Engl. J. Med. 361, 932–934 (2009).
Article CAS PubMed Google Scholar
Kassab, K., Soni, R., Kassier, A. & Fischell, T. A. The potential role of renal denervation in the management of heart failure. J. Clin. Med. 11, 4147 (2022).
Article PubMed PubMed Central Google Scholar
Lauar, M. R. et al. Renal and hypothalamic inflammation in renovascular hypertension: role of afferent renal nerves. Am. J. Physiol. Regul. Integr. Comp. Physiol. 325, R411–R422 (2023).
Article CAS PubMed PubMed Central Google Scholar
Veiga, A. C. et al. Selective afferent renal denervation mitigates renal and splanchnic sympathetic nerve overactivity and renal function in chronic kidney disease-induced hypertension. J. Hypertens. 38, 765–773 (2020).
Article CAS PubMed Google Scholar
Banek, C. T. et al. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension 68, 1415–1423 (2016).
Article CAS PubMed Google Scholar
Nishi, E. E., Bergamaschi, C. T. & Campos, R. R. The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation. Exp. Physiol. 100, 479–484 (2015).
Diaz-Morales, N., Baranda-Alonso, E. M., Martinez-Salgado, C. & Lopez-Hernandez, F. J. Renal sympathetic activity: a key modulator of pressure natriuresis in hypertension. Biochem. Pharmacol. 208, 115386 (2023).
Article CAS PubMed Google Scholar
Kopp, U. C. Neural Control of Renal Function Integrated Systems Physiology: from Molecule to Function to Disease (Morgan & Claypool, 2011).
DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997).
Article CAS PubMed Google Scholar
DiBona, G. F. & Sawin, L. L. Effect of renal nerve stimulation on NaCl and H2O transport in Henle’s loop of the rat. Am. J. Physiol. 243, F576–F580 (1982).
Frame, A. A. et al. Sympathetic regulation of NCC in norepinephrine-evoked salt-sensitive hypertension in Sprague-Dawley rats. Am. J. Physiol. Renal Physiol. 317, F1623–F1636 (2019).
Article CAS PubMed PubMed Central Google Scholar
Pontes, R. B. et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am. J. Physiol. Renal Physiol. 308, F848–F856 (2015).
Article CAS PubMed Google Scholar
Mansley, M. K., Neuhuber, W., Korbmacher, C. & Bertog, M. Norepinephrine stimulates the epithelial Na+ channel in cortical collecting duct cells via α2-adrenoceptors. Am. J. Physiol. Renal Physiol. 308, F450–F458 (2015).
Article CAS PubMed Google Scholar
Ferguson, M. & Bell, C. Ultrastructural localization and characterization of sensory nerves in the rat kidney. J. Comp. Neurol. 274, 9–16 (1988).
Article CAS PubMed Google Scholar
Marfurt, C. F. & Echtenkamp, S. F. Sensory innervation of the rat kidney and ureter as revealed by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from dorsal root ganglia. J. Comp. Neurol. 311, 389–404 (1991).
Article CAS PubMed Google Scholar
Ditting, T. et al. Do distinct populations of dorsal root ganglion neurons account for the sensory peptidergic innervation of the kidney? Am. J. Physiol. Renal Physiol. 297, F1427–F1434 (2009).
Article CAS PubMed Google Scholar
Tyshynsky, R. et al. Periglomerular afferent innervation of the mouse renal cortex. Front. Neurosci. 17, 974197 (2023).
留言 (0)