The Role of SIRT1 in Leukemia

Fajardo-Orduña GR, et al. Role of SIRT1 in chemoresistant leukemia. Int J Mol Sci. 2023;24(19):14470. https://doi.org/10.3390/ijms241914470.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Döhner H, et al. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52. https://doi.org/10.1056/NEJMra1406184.

Article  CAS  PubMed  Google Scholar 

Lancho O, et al. A therapeutically targetable NOTCH1–SIRT1–KAT7 axis in T-cell leukemia. Blood Cancer Discov. 2023;4(1):12–33. https://doi.org/10.1158/2643-3230.BCD-22-0098.

Article  CAS  PubMed  Google Scholar 

Vachharajani V, McCall CE. Sirtuins: potential therapeutic targets for regulating acute inflammatory response? Expert Opin Ther Targets. 2020;24(5):489–97. https://doi.org/10.1080/14728222.2020.1743268.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai H, et al. Discovery of novel SIRT1/2 inhibitors with effective cytotoxicity against human leukemia cells. J Chem Inf Model. 2023;63(15):4780–90. https://doi.org/10.1021/acs.jcim.3c00556.

Article  CAS  PubMed  Google Scholar 

Kim E-J, et al. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007;28(2):277–90. https://doi.org/10.1016/j.molcel.2007.08.030.

Article  CAS  PubMed  Google Scholar 

Carafa V, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 2016;8(1). https://doi.org/10.1186/s13148-016-0224-3.

Heshmati M, et al. Ghrelin induces autophagy and CXCR4 expression via the SIRT1/AMPK axis in lymphoblastic leukemia cell lines. Cell Signal. 2020;66:109492. https://doi.org/10.1016/j.cellsig.2019.109492.

Article  CAS  PubMed  Google Scholar 

Li L, Bhatia R. Role of SIRT1 in the growth and regulation of normal hematopoietic and leukemia stem cells. Curr Opin Hematol. 2015;22(4):324–9. https://doi.org/10.1097/MOH.0000000000000152.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, et al. SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells. Cell Stem Cell. 2014;15(4):431–46. https://doi.org/10.1016/j.stem.2014.08.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, et al. Specific overexpression of SIRT1 in mesenchymal stem cells rescues hematopoiesis niche in BMI1 knockout mice through promoting CXCL12 expression. Int J Biol Sci. 2022;18(5):2091–103. https://doi.org/10.7150/ijbs.63876.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang F, et al. SIRT1 regulates the phosphorylation and degradation of P27 by deacetylating CDK2 to promote T-cell acute lymphoblastic leukemia progression. J Exp Clin Cancer Res. 2021;40(1). https://doi.org/10.1186/s13046-021-02071-w.

Tang Y-L, et al. Ginsenoside Rg1 Inhibits Cell Proliferation and Induces Markers of Cell Senescence in CD34+CD38– Leukemia Stem Cells Derived from KG1α Acute Myeloid Leukemia Cells by Activating the Sirtuin 1 (SIRT1)/Tuberous Sclerosis Complex 2 (TSC2) Signaling Pathway. Med Sci Monit. 2020;26. https://doi.org/10.12659/MSM.918207.

Wang Z, Chen C-C, Chen W. CD150− Side Population Defines Leukemia Stem Cells in a BALB/c Mouse Model of CML and Is Depleted by Genetic Loss of SIRT1. Stem Cells. 2015;33(12):3437–51. https://doi.org/10.1002/stem.2218.

Article  CAS  PubMed  Google Scholar 

Liu W, et al. ACSL1 promotes imatinib-induced chronic myeloid leukemia cell senescence by regulating SIRT1/p53/p21 pathway. Sci Rep. 2022;12(1). https://doi.org/10.1038/s41598-022-21009-6.

Wang Z, et al. Loss of SIRT1 inhibits hematopoietic stem cell aging and age-dependent mixed phenotype acute leukemia. Commun Biol. 2022;5(1). https://doi.org/10.1038/s42003-022-03340-w.

Kuntz EM, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23(10):1234–40. https://doi.org/10.1038/nm.4399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abraham A, et al. SIRT1 regulates metabolism and leukemogenic potential in CML stem cells. J Clin Investig. 2019;129(7):2685–701. https://doi.org/10.1172/JCI127080.

Article  PubMed  PubMed Central  Google Scholar 

Hu X, et al. CXCR4-mediated signaling regulates autophagy and influences acute myeloid leukemia cell survival and drug resistance. Cancer Lett. 2018;425:1–12. https://doi.org/10.1016/j.canlet.2018.03.024.

Article  CAS  PubMed  Google Scholar 

Huang R, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 2015;57(3):456–66. https://doi.org/10.1016/j.molcel.2014.12.013.

Article  CAS  PubMed  Google Scholar 

Huang H, et al. Chidamide enhances the cytotoxicity of cytarabine and sorafenib in acute myeloid leukemia cells by modulating H3K9me3 and autophagy levels. Front Oncol. 2019;9. https://doi.org/10.3389/fonc.2019.01276.

Dong A, et al. Bioinformatics analysis of the network of histone H3 lysine 9 trimethylation in acute myeloid leukaemia. Oncol Rep. 2020;44(2):543–54. https://doi.org/10.3892/or.2020.7627.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zapata‐Pérez R, et al. NAD+ homeostasis in human health and disease. EMBO Mol Med. 2021;13(7). https://doi.org/10.15252/emmm.202113943.

Guo W, et al. The change of nuclear LC3 distribution in acute myeloid leukemia cells. Exp Cell Res. 2018;369(1):69–79. https://doi.org/10.1016/j.yexcr.2018.05.007.

Article  CAS  PubMed  Google Scholar 

Nikolaou M, et al. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metas. 2018;35(4):309–18. https://doi.org/10.1007/s10585-018-9903-0.

Article  CAS  Google Scholar 

O’Grady S, et al. The role of DNA repair pathways in cisplatin resistant lung cancer. Cancer Treat Rev. 2014;40(10):1161–70. https://doi.org/10.1016/j.ctrv.2014.10.003.

Article  CAS  PubMed  Google Scholar 

Jablonski RP, et al. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis. FASEB J. 2017;31(6):2520–32. https://doi.org/10.1096/fj.201601077R.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiao F, Gong Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid Med Cell Longev. 2020;2020:1–19. https://doi.org/10.1155/2020/6782872.

Article  CAS  Google Scholar 

Ding N, et al. Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage. J Mol Cell Biol. 2016;8(3):244–54. https://doi.org/10.1093/jmcb/mjv050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong J, et al. Acetylation of hMOF modulates H4K16ac to regulate DNA repair genes in response to oxidative stress. Int J Biol Sci. 2017;13(7):923–34. https://doi.org/10.7150/ijbs.17260.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amjad S, et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol Metab. 2021;49:101195. https://doi.org/10.1016/j.molmet.2021.101195.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alves-Fernandes DK, Jasiulionis MG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci. 2019;20(13):3153. https://doi.org/10.3390/ijms20133153.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu W, et al. KU70 inhibition impairs both non-homologous end joining and homologous recombination DNA damage repair through SHP-1 induced dephosphorylation of SIRT1 in adult T-Cell leukemia-lymphoma cells. Cell Physiol Biochem. 2018;49(6):2111–23. https://doi.org/10.1159/000493815.

Article  CAS 

留言 (0)

沒有登入
gif