Turner NC, et al. Palbociclib in hormone-receptor–positive advanced breast cancer. N Engl J Med. 2015;373(3):209–19. https://doi.org/10.1056/nejmoa1505270.
Finn RS, et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375(20):1925–36. https://doi.org/10.1056/nejmoa1607303.
Hortobagyi GN, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48. https://doi.org/10.1056/nejmoa1609709.
Slamon DJ, et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol. 2018;36(24):2465–72. https://doi.org/10.1200/JCO.2018.78.9909.
Tripathy D, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 2018;19(7):904–15. https://doi.org/10.1016/S1470-2045(18)30292-4.
Sledge GW, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2-advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35(25):2875–84. https://doi.org/10.1200/JCO.2017.73.7585.
Goetz MP, et al. MONARCH 3: abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35(32):3638–46. https://doi.org/10.1200/JCO.2017.75.6155.
Hortobagyi GN, et al. Overall survival with ribociclib plus letrozole in advanced breast cancer. N Engl J Med. 2022;386(10):942–50. https://doi.org/10.1056/nejmoa2114663.
Slamon DJ, et al. Overall survival with ribociclib plus fulvestrant in advanced breast cancer. N Engl J Med. 2020;382(6):514–24. https://doi.org/10.1056/nejmoa1911149.
Im S-A, et al. Overall survival with ribociclib plus endocrine therapy in breast cancer. N Engl J Med. 2019;381(4):307–16. https://doi.org/10.1056/nejmoa1903765.
Sledge GW, et al. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy—MONARCH 2: a randomized clinical trial. JAMA Oncol. 2020;6(1):116. https://doi.org/10.1001/jamaoncol.2019.4782.
Goetz MP et al. MONARCH 3: final overall survival results of abemaciclib plus a nonsteroidal aromatase inhibitor as first-line therapy for HR+, HER2- advanced breast cancer. San Antonio Breast Cancer Symposium. p. Abstract GS01–12. 2023.
Finn RS, et al. Overall survival (OS) with first-line palbociclib plus letrozole (PAL+LET) versus placebo plus letrozole (PBO+LET) in women with estrogen receptor–positive/human epidermal growth factor receptor 2–negative advanced breast cancer (ER+/HER2− ABC): analyses. J Clin Oncol. 2022;40(17_suppl):LBA1003. https://doi.org/10.1200/jco.2022.40.17_suppl.lba1003.
Turner NC, et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N Engl J Med. 2018;379(20):1926–36. https://doi.org/10.1056/nejmoa1810527.
Sonke GS, et al. Primary outcome analysis of the phase 3 SONIA trial (BOOG 2017–03) on selecting the optimal position of cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors for patients with hormone receptor-positive (HR+), HER2-negative (HER2-) advanced breast cancer (ABC). J Clin Oncol. 2023;41(17_suppl):LBA1000. https://doi.org/10.1200/JCO.2023.41.17_suppl.LBA1000.
Johnston SRD, et al. Abemaciclib combined with endocrine therapy for the adjuvant treatment of HR1, HER22, node-positive, high-risk, early breast cancer (monarchE). J Clin Oncol. 2020;38(34):3987–98. https://doi.org/10.1200/JCO.20.02514.
Article PubMed PubMed Central Google Scholar
Slamon DJ, et al. Ribociclib and endocrine therapy as adjuvant treatment in patients with HR+/HER2- early breast cancer: primary results from the phase III NATALEE trial. J Clin Oncol. 2023;41(17_suppl):LBA500. https://doi.org/10.1200/JCO.2023.41.17_suppl.LBA500.
Harbour JW, et al. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98(6):859–69. https://doi.org/10.1016/S0092-8674(00)81519-6.
Nurse PM. Nobel lecture. Cyclin dependent kinases and cell cycle control. Biosci Rep. 2002;22(5–6):487–99. https://doi.org/10.1023/a:1022017701871. (England).
Goel S, Bergholz JS, Zhao JJ. Targeting cyclin-dependent kinases 4 and 6 in cancer. Nat Rev Cancer. 2022;22(6):356. https://doi.org/10.1038/s41568-022-00456-3.Targeting.
Article PubMed PubMed Central Google Scholar
George MA, et al. Clinical and pharmacologic differences of CDK4/6 inhibitors in breast cancer. Front Oncol. 2021;11. https://doi.org/10.3389/fonc.2021.693104.
Hafner M, et al. Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chem Biol. 2019;26(8):1067-1080.e8. https://doi.org/10.1016/j.chembiol.2019.05.005.
Article PubMed PubMed Central Google Scholar
Dickler MN, et al. Monarch 1. Clin Cancer Res. 2017;23(17):5218–24. https://doi.org/10.1158/1078-0432.CCR-17-0754.MONARCH.
Article PubMed PubMed Central Google Scholar
Goel S, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548(7668):471–5. https://doi.org/10.1038/nature23465.
Article PubMed PubMed Central Google Scholar
Schaer DA, et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep. 2018;22(11):2978–94. https://doi.org/10.1016/j.celrep.2018.02.053.
Deng J, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 2018;8(2):216–33. https://doi.org/10.1158/2159-8290.CD-17-0915.
Lelliott EJ, et al. CDK4/6 inhibition promotes antitumor immunity through the induction of T-cell memory. Cancer Discov. 2021;11(10):2582–601. https://doi.org/10.1158/2159-8290.CD-20-1554.
Asghar US, et al. Systematic review of molecular biomarkers predictive of resistance to CDK4/6 inhibition in metastatic breast cancer. JCO Precis Oncol. 2022;6:1–13. https://doi.org/10.1200/po.21.00002.
Formisano L, et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat Commun. 2019;10(1):1–14. https://doi.org/10.1038/s41467-019-09068-2.
Nayar U, et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor–directed therapies. Nat Genet. 2019;51(2):207–16. https://doi.org/10.1038/s41588-018-0287-5.
Yang C, et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene. 2017;36(16):2255–64. https://doi.org/10.1038/onc.2016.379.
Lloyd MR, et al. Mechanisms of resistance to CDK4/6 blockade in advanced hormone receptor-positive, HER2-negative breast cancer and emerging therapeutic opportunities. Clin Cancer Res. 2022;28(5):821–30. https://doi.org/10.1158/1078-0432.CCR-21-2947.
Safonov A, et al. Comprehensive genomic profiling of patients with breast cancer identifies germline-somatic interactions mediating therapy resistance [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7–10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr GS4–08.
Wander SA, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor–positive metastatic breast cancer. Cancer Discov. 2020;10(8):1174–93. https://doi.org/10.1158/2159-8290.CD-19-1390.
Article PubMed PubMed Central Google Scholar
Malorni L, et al. Serum thymidine kinase activity in patients with HR-positive/HER2-negative advanced breast cancer treated with ribociclib plus letrozole: results from the prospective BioItaLEE trial. Eur J Cancer. 2023;186:1–11.
留言 (0)