Lareau SC, Fahy B, Meek P, Wang A. Chronic Obstructive Pulmonary Disease (COPD). Am J Resp Crit Care. 2019;199:P1–2. https://doi.org/10.1164/rccm.1991P1.
Mokra D. Acute lung injury - from pathophysiology to treatment. Physiol Res. 2020;69:S353–66. https://doi.org/10.33549/physiolres.934602.
Article CAS PubMed PubMed Central Google Scholar
Myllarniemi M, Kaarteenaho R. Pharmacological treatment of idiopathic pulmonary fibrosis - preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine. Eur Cli Respir J. 2015. https://doi.org/10.3402/ecrj.v2.26385.
Dong Q, Chen ES, Zhao C, Jin C. Host-microbiome interaction in lung cancer. Front Immunol. 2021;12:679829. https://doi.org/10.3389/fimmu.2021.679829.
Article CAS PubMed PubMed Central Google Scholar
Gan PXL, Liao W, Lim HF, Wong WSF. Dexamethasone protects against Aspergillus fumigatus-induced severe asthma via modulating pulmonary immunometabolism. Pharmacol Res. 2023;196:106929. https://doi.org/10.1016/j.phrs.2023.106929.
Article CAS PubMed Google Scholar
Ning L, Shishi Z, Bo W, Huiqing L. Targeting immunometabolism against acute lung injury. Clin Immunol. 2023;249:109289. https://doi.org/10.1016/j.clim.2023.109289.
Article CAS PubMed PubMed Central Google Scholar
Baup S. Ueber eine neue Pyrogen-Citronensäure, und über Benennung der Pyrogen-Säuren überhaupt. Annalen der Pharmacie. 2006;19:29–38. https://doi.org/10.1002/jlac.18360190107.
Holmes FL. Hans Krebs: Architect of Intermediary Metabolism 1933–1937, Oxford University Press, 1993. https://doi.org/10.1093/oso/9780195076578.001.0001
Sakai A, Kusumoto A, Kiso Y, Furuya E. Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver. Nutrition. 2004;20:997–1002. https://doi.org/10.1016/j.nut.2004.08.007.
Article CAS PubMed Google Scholar
Strelko CL, Lu W, Dufort FJ, Seyfried TN, Chiles TC, Rabinowitz JD, Roberts MF. Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc. 2011;133:16386–9. https://doi.org/10.1021/ja2070889.
Article CAS PubMed PubMed Central Google Scholar
Sugimoto M, Sakagami H, Yokote Y, Onuma H, Kaneko M, Mori M, Sakaguchi Y, Soga T, Tomita M. Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics. 2011;8:624–33. https://doi.org/10.1007/s11306-011-0353-9.
Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A, Buttini M, Linster CL, Medina E, Balling R, Hiller K. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. P Natl Acad Sci USA. 2013;110:7820–5. https://doi.org/10.1073/pnas.1218599110.
Basler T, Jeckstadt S, Valentin-Weigand P, Goethe R. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages. J Leukocyte Biol. 2006;79:628–38. https://doi.org/10.1189/jlb.0905520.
Article CAS PubMed Google Scholar
Thomas DM, Francescutti-Verbeem DM, Kuhn DM. Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. Faseb J. 2006;20:515–7. https://doi.org/10.1096/fj.05-4873fje.
Article CAS PubMed Google Scholar
Zaslona Z, ONeill LAJ. Cytokine-like roles for metabolites in immunity. Molecular cell. 2020;78:814–23. https://doi.org/10.1016/j.molcel.2020.04.002.
Article CAS PubMed Google Scholar
Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, Jedrychowski MP, Costa ASH, Higgins M, Hams E, Szpyt J, Runtsch MC, King MS, McGouran JF, Fischer R, Kessler BM, McGettrick AF, Hughes MM, Carroll RG, Booty LM, Knatko EV, Meakin PJ, Ashford MLJ, Modis LK, Brunori G, Sevin DC, Fallon PG, Caldwell ST, Kunji ERS, Chouchani ET, Frezza C, Dinkova-Kostova AT, Hartley RC, Murphy MP, ONeill LA. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556:113–7. https://doi.org/10.1038/nature25986.
Article CAS PubMed PubMed Central Google Scholar
Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, Koseki H, Cabrales P, Murphy AN, Hiller K, Metallo CM. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem. 2016;291:14274–84. https://doi.org/10.1074/jbc.M115.685792.
Article CAS PubMed PubMed Central Google Scholar
Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, Cervantes-Barragan L, Ma X, Huang SC, Griss T, Weinheimer CJ, Khader S, Randolph GJ, Pearce EJ, Jones RG, Diwan A, Diamond MS, Artyomov MN. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016;24:158–66. https://doi.org/10.1016/j.cmet.2016.06.004.
Article CAS PubMed PubMed Central Google Scholar
Nemeth B, Doczi J, Csete D, Kacso G, Ravasz D, Adams D, Kiss G, Nagy AM, Horvath G, Tretter L, Mocsai A, Csepanyi-Komi R, Iordanov I, Adam-Vizi V, Chinopoulos C. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage. Faseb J. 2016;30:286–300. https://doi.org/10.1096/fj.15-279398.
Article CAS PubMed Google Scholar
Tang C, Wang X, Xie Y, Cai X, Yu N, Hu Y, Zheng Z. 4-Octyl itaconate activates Nrf2 signaling to inhibit pro-inflammatory cytokine production in peripheral blood mononuclear cells of systemic lupus erythematosus patients. Cell Physiol Biochem. 2018;51:979–90. https://doi.org/10.1159/000495400.
Article CAS PubMed Google Scholar
Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, Korenfeld D, Mathyer ME, Kim H, Huang LH, Duncan D, Bregman H, Keskin A, Santeford A, Apte RS, Sehgal R, Johnson B, Amarasinghe GK, Soares MP, Satoh T, Akira S, Hai T, de Guzman Strong C, Auclair K, Roddy TP, Biller SA, Jovanovic M, Klechevsky E, Stewart KM, Randolph GJ, Artyomov MN. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature. 2018;556:501–4. https://doi.org/10.1038/s41586-018-0052-z.
Article CAS PubMed PubMed Central Google Scholar
Hooftman A, Angiari S, Hester S, Corcoran SE, Runtsch MC, Ling C, Ruzek MC, Slivka PF, McGettrick AF, Banahan K, Hughes MM, Irvine AD, Fischer R, O’Neill LAJ. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 2020;32(468–478):e467. https://doi.org/10.1016/j.cmet.2020.07.016.
Qin W, Qin K, Zhang Y, Jia W, Chen Y, Cheng B, Peng L, Chen N, Liu Y, Zhou W, Wang YL, Chen X, Wang C. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat Chem Biol. 2019;15:983–91. https://doi.org/10.1038/s41589-019-0323-5.
Article CAS PubMed Google Scholar
Chen LL, Morcelle C, Cheng ZL, Chen X, Xu Y, Gao Y, Song J, Li Z, Smith MD, Shi M, Zhu Y, Zhou N, Cheng M, He C, Liu KY, Lu G, Zhang L, Zhang C, Zhang J, Sun Y, Qi T, Lyu Y, Ren ZZ, Tan XM, Yin J, Lan F, Liu Y, Yang H, Qian M, Duan C, Chang X, Zhou Y, Shen L, Baldwin AS, Guan KL, Xiong Y, Ye D. Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nat Cell Biol. 2022;24:353–63. https://doi.org/10.1038/s41556-022-00853-8.
Article CAS PubMed PubMed Central Google Scholar
Runtsch MC, Angiari S, Hooftman A, Wadhwa R, Zhang Y, Zheng Y, Spina JS, Ruzek MC, Argiriadi MA, McGettrick AF, Mendez RS, Zotta A, Peace CG, Walsh A, Chirillo R, Hams E, Fallon PG, Jayamaran R, Dua K, Brown AC, Kim RY, Horvat JC, Hansbro PM, Wang C, O’Neill LAJ. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab. 2022;34(487–501):e488. https://doi.org/10.1016/j.cmet.2022.02.002.
Zhang Z, Chen C, Yang F, Zeng YX, Sun P, Liu P, Li X. Itaconate is a lysosomal inducer that promotes antibacterial innate immunity. Mol cell. 2022;82(2844–2857):e2810. https://doi.org/10.1016/j.molcel.2022.05.009.
Peace CG, O’Neill LA. The role of itaconate in host defense and inflammation. J Clin Invest. 2022;132:e148548.
留言 (0)