Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114(9):1453–68.
Article CAS PubMed Google Scholar
Karwath A, Bunting KV, Gill SK, et al. Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis. Lancet. 2021;398(10309):1427–35.
Article CAS PubMed PubMed Central Google Scholar
Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498.
Kirchhof P. The future of atrial fibrillation management: integrated care and stratified therapy. Lancet. 2017;390(10105):1873–87.
Seligman WH, Das-Gupta Z, Jobi-Odeneye AO, et al. Development of an international standard set of outcome measures for patients with atrial fibrillation: a report of the International Consortium for Health Outcomes Measurement (ICHOM) atrial fibrillation working group. Eur Heart J. 2020;41(10):1132–40.
Article PubMed PubMed Central Google Scholar
Sepehri Shamloo A, Dagres N, Müssigbrodt A, et al. Atrial fibrillation and cognitive impairment: new insights and future directions. Heart Lung Circ. 2020;29(1):69–85.
Kallistratos MS, Poulimenos LE, Manolis AJ. Atrial fibrillation and arterial hypertension. Pharmacol Res. 2018;128:322–6.
Article CAS PubMed Google Scholar
Passman R. Catheter Ablation for Persistent Atrial Fibrillation. JAMA. 2023;329(2):125–6.
Park J-W, Yu HT, Kim T-H et al. Mechanisms of long-term recurrence 3 years after catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2020;6(8):999–1007.
January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration with the Society of Thoracic Surgeons. Circulation. 2019;140(2):e125–e51.
Cheng TO. All teas are not created equal: the Chinese green tea and cardiovascular health. Int J Cardiol. 2006;108(3):301–8.
Kuriyama S, Shimazu T, Ohmori K, et al. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA. 2006;296(10):1255–65.
Article CAS PubMed Google Scholar
Stangl V, Dreger H, Stangl K, Lorenz M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res. 2007;73(2):348–58.
Article CAS PubMed Google Scholar
Suzuki J-I, Ogawa M, Futamatsu H, et al. Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail. 2007;9(2):152–9.
Article CAS PubMed Google Scholar
Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R. Therapeutic effects of EGCG: a patent review. Expert Opin Ther Pat. 2016;26(8):907–16.
Article CAS PubMed Google Scholar
Hao J, Kim C-H, Ha T-S, Ahn H-Y. Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Sci. 2007;8(2):121–9.
Article PubMed PubMed Central Google Scholar
Li H-L, Huang Y, Zhang C-N, et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med. 2006;40(10):1756–75.
Article CAS PubMed Google Scholar
Al Hroob AM, Abukhalil MH, Hussein OE, Mahmoud AM. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother. 2019;109:2155–72.
Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients. 2013;5(10):3779–827.
Article CAS PubMed PubMed Central Google Scholar
Chapman HA, Wei Y, Montas G, et al. Reversal of TGFβ1-driven profibrotic state in patients with pulmonary fibrosis. N Engl J Med. 2020;382(11):1068–70.
Article PubMed PubMed Central Google Scholar
Chang J-H, Chang S-L, Hong P-D, et al. Epigallocatechin-3-gallate modulates arrhythmogenic activity and calcium homeostasis of left atrium. Int J Cardiol. 2017;236:174–80.
Dange RB, Agarwal D, Masson GS, et al. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II-induced hypertension. Cardiovasc Res. 2014;103(1):17–27.
Article CAS PubMed Google Scholar
Gong C, Ding Y, Liang F, et al. Muscarinic receptor regulation of chronic pain-induced atrial fibrillation. Front Cardiovasc Med. 2022;9:934906.
Article PubMed PubMed Central Google Scholar
Chung C, Kao Y, Yao C, Lin Y, Chen Y. A comparison of left and right atrial fibroblasts reveals different collagen production activity and stress-induced mitogen-activated protein kinase signalling in rats. Acta Physiol (Oxford). 2017;220(4):432–45.
Ma C, Wang X, Yang F, et al. Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. Mol Cancer. 2020;19(1):157.
Article CAS PubMed PubMed Central Google Scholar
Rittié L. Method for picrosirius red-polarization detection of collagen fibers in tissue sections. Methods Mol Biol. 1627;2017:395–407.
Jiang Y, Song J, Xu Y, et al. Piezo1 regulates intestinal epithelial function by affecting the tight junction protein claudin-1 via the ROCK pathway. Life Sci. 2021;275:119254.
Article CAS PubMed Google Scholar
Schüttler D, Bapat A, Kääb S et al. Animal models of atrial fibrillation. Circ Res. 2020;127(1):91–110.
Avitall B, Urbonas A, Urboniene D, et al. The ablation of atrial fibrillation with the loop catheter design: what we have learned from the animal model. Pacing Clin Electrophysiol. 2001;24(7):1138–49.
Article CAS PubMed Google Scholar
Wang Y, Wang M, Samuel CS, Widdop RE. Preclinical rodent models of cardiac fibrosis. Br J Pharmacol. 2022;179(5):882–99.
Article CAS PubMed Google Scholar
Wang Y, Han L, Shen M, et al. Serelaxin and the AT2 receptor agonist CGP42112 evoked a similar, nonadditive, cardiac antifibrotic effect in high salt-fed mice that were refractory to Candesartan Cilexetil. ACS Pharmacol Transl Sci. 2020;3(1):76–87.
Article PubMed PubMed Central Google Scholar
Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res. 2000;46(2):264–8.
Article CAS PubMed Google Scholar
Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation. 1993;88(6):2849–61.
留言 (0)