Barge, L. M. Considering planetary environments in origin of life studies. Nat. Commun. 9, 5170 (2018).
Article CAS PubMed PubMed Central Google Scholar
Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rimmer, P. B. in Conflicting Models for the Origin of Life (eds Smoukov, S. K. et al.) 407–424 (Scrivener Publishing LLC, 2023).
Kosikova, T. & Philp, D. Exploring the emergence of complexity using synthetic replicators. Chem. Soc. Rev. 46, 7274–7305 (2017).
Article CAS PubMed Google Scholar
Kauffman, S. A. A World Beyond Physics Oxford and New Yok (Oxford Univ. Press, 2019).
Muchowska, K. B., Varma, S. J. & Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020).
Article CAS PubMed Google Scholar
Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).
Article CAS PubMed Google Scholar
Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).
Article CAS PubMed Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Article CAS PubMed PubMed Central Google Scholar
Faber, K., Fessner, W. & Turner, N. J. Biocatalysis: ready to master increasing complexity. Adv. Synth. Catal. 361, 2373–2376 (2019).
Doudna, J. A. & Cech, T. R. The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002).
Article CAS PubMed Google Scholar
Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).
Garenne, D. et al. Cell-free gene expression. Nat. Rev. Methods Primers 1, 49 (2021).
Benner, S. A., Kim, H.-J. & Carrigan, M. A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 45, 2025–2034 (2012).
Article CAS PubMed Google Scholar
Shapiro, R. Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosph. 18, 71–85 (1988).
Article CAS PubMed Google Scholar
Shapiro, R. Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc. Natl Acad. Sci. USA 96, 4396–4401 (1999).
Article CAS PubMed PubMed Central Google Scholar
Bregestovski, P. D. “RNA World”, a highly improbable scenario of the origin and early evolution of life on earth. J. Evol. Biochem. Phys. 51, 72–84 (2015).
Kehila, D., Wong, K. T. C. & Tokuriki, N. Evolution of new metabolic pathways and microbial communities. Curr. Opin. Syst. Biol. 36, 100472 (2023).
Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).
Article CAS PubMed PubMed Central Google Scholar
Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).
Article CAS PubMed Google Scholar
Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev. 120, 4707–4765 (2020).
Article CAS PubMed Google Scholar
Yadav, M., Kumar, R. & Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 120, 4766–4805 (2020).
Article CAS PubMed Google Scholar
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).
Article CAS PubMed Google Scholar
Moger-Reischer, R. Z. et al. Evolution of a minimal cell. Nature 620, 122–127 (2023).
Article CAS PubMed PubMed Central Google Scholar
Lipmann, F. in Advances in Enzymology and Related Areas of Molecular Biology 99–162 (Wiley, 1941).
Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).
Article CAS PubMed Google Scholar
Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron 63, 12821–12844 (2007).
Xiang, Y.-B., Drenkard, S., Baumann, K., Hickey, D. & Eschenmoser, A. Chemie von a-aminonitrilen. 12. Mitteilung. Sondierungen über thermische Umwandlungen von a-aminonitrilen. Helv. Chim. Acta 77, 2209–2250 (1994).
Pitsch, S., Pombo-Villar, E. & Eschenmoser, A. Chemie von a-aminonitrilen. 13. Mitteilung. über die Bildung von 2-oxoethyl-phosphaten (‘Glycoladehyd-phosphaten’) ausrac-oxirancarbonitril und anorganischem phosphat und über (formale) Konstitutionelle Zusammenhänge zwischen 2-oxoethyl-phosphaten und oligo (hexo- und pentopyranosyl)nucleotid-Rückgraten. Helv. Chim. Acta 77, 2251–2285 (1994).
Ksander, G. et al. Chemie der α‐aminonitrile 1. Mitteilung einleitung und wege zu uroporphyrinogen‐octanitrilen. Helv. Chim. Acta 70, 1115–1172 (1987).
Wagner, E., Xiang, Y.-B., Baumann, K., Gück, J. & Eschenmoser, A. Chemie von α-aminonitrilen. Aziridin-2-carbonitril, ein vorläufer von rac-O3-phosphoserinnitril und glycolaldehyd-phosphat. Helv. Chim. Acta 73, 1391–1409 (1990).
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).
Article CAS PubMed Google Scholar
Thoma, B. & Powner, M. W. Selective synthesis of lysine peptides and the prebiotically plausible synthesis of catalytically active diaminopropionic acid peptide nitriles in water. J. Am. Chem. Soc. 145, 3121–3130 (2023).
Article CAS PubMed PubMed Central Google Scholar
Wayne, S. I. & Fruton, J. S. Thermolysin-catalyzed peptide bond synthesis. Proc. Natl Acad. Sci. USA 80, 3241–3244 (1983).
Article CAS PubMed PubMed Central Google Scholar
Liu, R. & Orgel, L. E. Polymerization of β-amino acids in aqueous solution. Orig. Life Evol. Biosph. 28, 47–60 (1998).
Article CAS PubMed Google Scholar
Kawamura, K., Takeya, H. & Kushibe, T. Effect of condensation agents and minerals for oligop
留言 (0)