On the aqueous origins of the condensation polymers of life

Barge, L. M. Considering planetary environments in origin of life studies. Nat. Commun. 9, 5170 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rimmer, P. B. in Conflicting Models for the Origin of Life (eds Smoukov, S. K. et al.) 407–424 (Scrivener Publishing LLC, 2023).

Kosikova, T. & Philp, D. Exploring the emergence of complexity using synthetic replicators. Chem. Soc. Rev. 46, 7274–7305 (2017).

Article  CAS  PubMed  Google Scholar 

Kauffman, S. A. A World Beyond Physics Oxford and New Yok (Oxford Univ. Press, 2019).

Muchowska, K. B., Varma, S. J. & Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020).

Article  CAS  PubMed  Google Scholar 

Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).

Article  CAS  PubMed  Google Scholar 

Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).

Article  CAS  PubMed  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faber, K., Fessner, W. & Turner, N. J. Biocatalysis: ready to master increasing complexity. Adv. Synth. Catal. 361, 2373–2376 (2019).

Article  CAS  Google Scholar 

Doudna, J. A. & Cech, T. R. The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002).

Article  CAS  PubMed  Google Scholar 

Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

Article  Google Scholar 

Garenne, D. et al. Cell-free gene expression. Nat. Rev. Methods Primers 1, 49 (2021).

Article  CAS  Google Scholar 

Benner, S. A., Kim, H.-J. & Carrigan, M. A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 45, 2025–2034 (2012).

Article  CAS  PubMed  Google Scholar 

Shapiro, R. Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosph. 18, 71–85 (1988).

Article  CAS  PubMed  Google Scholar 

Shapiro, R. Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc. Natl Acad. Sci. USA 96, 4396–4401 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bregestovski, P. D. “RNA World”, a highly improbable scenario of the origin and early evolution of life on earth. J. Evol. Biochem. Phys. 51, 72–84 (2015).

Article  CAS  Google Scholar 

Kehila, D., Wong, K. T. C. & Tokuriki, N. Evolution of new metabolic pathways and microbial communities. Curr. Opin. Syst. Biol. 36, 100472 (2023).

Article  CAS  Google Scholar 

Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

Article  CAS  PubMed  Google Scholar 

Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev. 120, 4707–4765 (2020).

Article  CAS  PubMed  Google Scholar 

Yadav, M., Kumar, R. & Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 120, 4766–4805 (2020).

Article  CAS  PubMed  Google Scholar 

Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

Article  CAS  PubMed  Google Scholar 

Moger-Reischer, R. Z. et al. Evolution of a minimal cell. Nature 620, 122–127 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lipmann, F. in Advances in Enzymology and Related Areas of Molecular Biology 99–162 (Wiley, 1941).

Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).

Article  CAS  PubMed  Google Scholar 

Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron 63, 12821–12844 (2007).

Article  CAS  Google Scholar 

Xiang, Y.-B., Drenkard, S., Baumann, K., Hickey, D. & Eschenmoser, A. Chemie von a-aminonitrilen. 12. Mitteilung. Sondierungen über thermische Umwandlungen von a-aminonitrilen. Helv. Chim. Acta 77, 2209–2250 (1994).

Article  CAS  Google Scholar 

Pitsch, S., Pombo-Villar, E. & Eschenmoser, A. Chemie von a-aminonitrilen. 13. Mitteilung. über die Bildung von 2-oxoethyl-phosphaten (‘Glycoladehyd-phosphaten’) ausrac-oxirancarbonitril und anorganischem phosphat und über (formale) Konstitutionelle Zusammenhänge zwischen 2-oxoethyl-phosphaten und oligo (hexo- und pentopyranosyl)nucleotid-Rückgraten. Helv. Chim. Acta 77, 2251–2285 (1994).

Article  CAS  Google Scholar 

Ksander, G. et al. Chemie der α‐aminonitrile 1. Mitteilung einleitung und wege zu uroporphyrinogen‐octanitrilen. Helv. Chim. Acta 70, 1115–1172 (1987).

Article  CAS  Google Scholar 

Wagner, E., Xiang, Y.-B., Baumann, K., Gück, J. & Eschenmoser, A. Chemie von α-aminonitrilen. Aziridin-2-carbonitril, ein vorläufer von rac-O3-phosphoserinnitril und glycolaldehyd-phosphat. Helv. Chim. Acta 73, 1391–1409 (1990).

Article  CAS  Google Scholar 

Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).

Article  CAS  PubMed  Google Scholar 

Thoma, B. & Powner, M. W. Selective synthesis of lysine peptides and the prebiotically plausible synthesis of catalytically active diaminopropionic acid peptide nitriles in water. J. Am. Chem. Soc. 145, 3121–3130 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wayne, S. I. & Fruton, J. S. Thermolysin-catalyzed peptide bond synthesis. Proc. Natl Acad. Sci. USA 80, 3241–3244 (1983).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, R. & Orgel, L. E. Polymerization of β-amino acids in aqueous solution. Orig. Life Evol. Biosph. 28, 47–60 (1998).

Article  CAS  PubMed  Google Scholar 

Kawamura, K., Takeya, H. & Kushibe, T. Effect of condensation agents and minerals for oligop

留言 (0)

沒有登入
gif