Sun, Z., Fan, B. & Webber, M. J. Molecular engineering of carbohydrate recognition. ChemSystemsChem 5, e202200050 (2023).
Manick, A.-D., Dutasta, J.-P. & Martinez, A. Low-symmetry macrocycles and cages for carbohydrate recognition. ChemPlusChem 88, e202300291 (2023).
Article CAS PubMed Google Scholar
Day, C. J. et al. Glycan:glycan interactions: high affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells. Proc. Natl Acad. Sci. USA 112, 7266–7275 (2015).
Owens, B. Smart insulin: redesign could end hypoglycemia risk. Nat. Biotechnol. 36, 911–912 (2018).
Article CAS PubMed Google Scholar
Sun, X., Zhai, W., Fossey, J. S. & James, T. D. Boronic acids for fluorescence imaging of carbohydrates. Chem. Commun. 52, 3456–3469 (2016).
Francesconi, O., Milanesi, F., Nativi, C. & Roelens, S. A simple biomimetic receptor selectively recognizing the GlcNAc2 disaccharide in water. Angew. Chem. Int. Ed. 60, 11168–11172 (2021).
Oshovsky, G. V., Reinhoudt, D. N. & Verboom, W. Supramolecular chemistry in water. Angew. Chem. Int. Ed. 46, 2366–2393 (2007).
Zhang, X. T., Liu, G. J., Ning, Z. W. & Xing, G. W. Boronic acid-based chemical sensors for saccharides. Carbohydr. Res. 452, 129–148 (2017).
Article CAS PubMed Google Scholar
Shinkai, S., Tsukagoshi, K., Ishikawa, Y. & Kunitake, T. Molecular recognition of mono- and di-saccharides by phenylboronic acids in solvent extraction and as a monolayer. J. Chem. Soc. Chem. Commun. 1039–1041 (1991).
Sugasaki, A., Sugiyasu, K., Ikeda, M., Takeuchi, M. & Shinkai, S. First successful molecular design of an artificial Lewis oligosaccharide binding system utilizing positive homotropic allosterism. J. Am. Chem. Soc. 123, 10239–10244 (2001).
Article CAS PubMed Google Scholar
Droz, A. S., Neidlein, U., Anderson, S., Seiler, P. & Diederich, F. Optically active cyclophane receptors for mono- and disaccharides: the role of bidentate ionic hydrogen bonding in carbohydrate recognition. Helv. Chim. Acta 84, 2243–2289 (2001).
Rusin, O., Lang, K. & Král, V. 1,1′-Binaphthyl-substituted macrocycles as receptors for saccharide recognition. Chem. Eur. J. 8, 655–663 (2002).
Article CAS PubMed Google Scholar
Wu, X. et al. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev. 42, 8032–8048 (2013).
Article CAS PubMed Google Scholar
Zhai, W., Sun, X., James, T. D. & Fossey, J. S. Boronic acid-based carbohydrate sensing. Chem. Asian J. 10, 1836–1848 (2015).
Article CAS PubMed Google Scholar
Webster, C. S., Balduzzi, F. & Davis, A. P. Tricyclic octaurea “temples” for the recognition of polar molecules in water. Org. Biomol. Chem. 21, 525–532 (2023).
Article CAS PubMed Google Scholar
Li, Q., Zhu, H. & Huang, F. Pillararene-based supramolecular functional materials. Trends Chem. 2, 850–864 (2020).
Yokoya, M., Kimura, S. & Yamanaka, M. Urea derivatives as functional molecules: supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts. Chem. Eur. J. 27, 5601–5614 (2021).
Article CAS PubMed Google Scholar
Dong, J. & Davis, A. P. Molecular recognition mediated by hydrogen bonding in aqueous media. Angew. Chem. Int. Ed. 60, 8035–8048 (2021).
Davis, A. P. Biomimetic carbohydrate recognition. Chem. Soc. Rev. 49, 2531–2545 (2020).
Article CAS PubMed Google Scholar
Mooibroek, T. J. et al. A threading receptor for polysaccharides. Nat. Chem. 8, 69–74 (2016).
Article CAS PubMed Google Scholar
Anderson, S., Neidlein, U., Gramlich, V. & Diederich, F. A new family of chiral binaphthyl-derived cyclophane receptors: complexation of pyranosides. Angew. Chem. Int. Ed. 34, 1596–1600 (1995).
James, T. D., Sandanayake, K. R. A. S. & Shinkai, S. Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem. Int. Ed. 35, 1910–1922 (1996).
Yang, W., He, H. & Drueckhammer, D. G. Computer-guided design in molecular recognition: design and synthesis of a glucopyranose receptor. Angew. Chem. Int. Ed. 40, 1714–1718 (2001).
Hubbard, R. D., Horner, S. R. & Miller, B. L. Highly substituted ter-cyclopentanes as receptors for lipid A. J. Am. Chem. Soc. 123, 5810–5811 (2001).
Article CAS PubMed Google Scholar
Davis, A. P. & James, T. D. in Functional Synthetic Receptors (eds Schrader, T. & Hamilton, A. D.) 45–109 (Wiley-VCH, 2005).
Mazik, M. Recent developments in the molecular recognition of carbohydrates by artificial receptors. RSC Adv. 2, 2630–2642 (2012).
Francesconi, O. & Roelens, S. Biomimetic carbohydrate-binding agents (CBAs): binding affinities and biological activities. ChemBioChem 20, 1329–1346 (2019).
Article CAS PubMed Google Scholar
Ramos-Soriano, J., Benitez-Benitez, S. J., Davis, A. P. & Galan, M. C. A vibration-induced-emission-based fluorescent chemosensor for the selective and visual recognition of glucose. Angew. Chem. Int. Ed. 60, 16880–16884 (2021).
James, T. D., Sandanayake, K. R. A. S. & Shinkai, S. A glucose-selective molecular fluorescence sensor. Angew. Chem. Int. Ed. 33, 2207–2209 (1994).
Striegler, S. & Gichinga, M. G. Disaccharide recognition by binuclear copper(II) complexes. Chem. Commun. 5930–5932 (2008).
Ke, C., Destecroix, H., Crump, M. P. & Davis, A. P. A simple and accessible synthetic lectin for glucose recognition and sensing. Nat. Chem. 4, 718–723 (2012).
Article CAS PubMed Google Scholar
Destecroix, H. et al. Affinity enhancement by dendritic side chains in synthetic carbohydrate receptors. Angew. Chem. Int. Ed. 54, 2057–2061 (2015).
Leibiger, B., Stapf, M. & Mazik, M. Cycloalkyl groups as building blocks of artificial carbohydrate receptors: studies with macrocycles bearing flexible side-arms. Molecules 27, 7630 (2022).
Article CAS PubMed PubMed Central Google Scholar
Jang, Y., Natarajan, R., Ko, Y. H. & Kim, K. Cucurbit[7]uril: a high-affinity host for encapsulation of amino saccharides and supramolecular stabilization of their α-anomers in water. Angew. Chem. Int. Ed. 53, 1003–1007 (2014).
Saha, S., Kauffmann, B., Ferrand, Y. & Huc, I. Selective encapsulation of disaccharide xylobiose by an aromatic foldamer helical capsule. Angew. Chem. Int. Ed. 57, 13542–13546 (2018).
Li, T.-R., Huck, F., Piccini, G. & Tiefenbacher, K. Mimicry of the proton wire mechanism of enzymes inside a supramolecular capsule enables β-selective O-glycosylations. Nat. Chem. 14, 985–994 (2022). This article shows that the neutral molecule-driven supramolecular resorcin[4]arene capsule facilitates highly β-selective glycosylation reactions through proton wires activation.
Montà-González, G., Sancenón, F., Martínez-Máñez, R. & Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 122, 13636–13708 (2022).
留言 (0)