Synthetic molecular cage receptors for carbohydrate recognition

Sun, Z., Fan, B. & Webber, M. J. Molecular engineering of carbohydrate recognition. ChemSystemsChem 5, e202200050 (2023).

Article  CAS  Google Scholar 

Manick, A.-D., Dutasta, J.-P. & Martinez, A. Low-symmetry macrocycles and cages for carbohydrate recognition. ChemPlusChem 88, e202300291 (2023).

Article  CAS  PubMed  Google Scholar 

Day, C. J. et al. Glycan:glycan interactions: high affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells. Proc. Natl Acad. Sci. USA 112, 7266–7275 (2015).

Article  Google Scholar 

Owens, B. Smart insulin: redesign could end hypoglycemia risk. Nat. Biotechnol. 36, 911–912 (2018).

Article  CAS  PubMed  Google Scholar 

Sun, X., Zhai, W., Fossey, J. S. & James, T. D. Boronic acids for fluorescence imaging of carbohydrates. Chem. Commun. 52, 3456–3469 (2016).

Article  CAS  Google Scholar 

Francesconi, O., Milanesi, F., Nativi, C. & Roelens, S. A simple biomimetic receptor selectively recognizing the GlcNAc2 disaccharide in water. Angew. Chem. Int. Ed. 60, 11168–11172 (2021).

Article  CAS  Google Scholar 

Oshovsky, G. V., Reinhoudt, D. N. & Verboom, W. Supramolecular chemistry in water. Angew. Chem. Int. Ed. 46, 2366–2393 (2007).

Article  CAS  Google Scholar 

Zhang, X. T., Liu, G. J., Ning, Z. W. & Xing, G. W. Boronic acid-based chemical sensors for saccharides. Carbohydr. Res. 452, 129–148 (2017).

Article  CAS  PubMed  Google Scholar 

Shinkai, S., Tsukagoshi, K., Ishikawa, Y. & Kunitake, T. Molecular recognition of mono- and di-saccharides by phenylboronic acids in solvent extraction and as a monolayer. J. Chem. Soc. Chem. Commun. 1039–1041 (1991).

Sugasaki, A., Sugiyasu, K., Ikeda, M., Takeuchi, M. & Shinkai, S. First successful molecular design of an artificial Lewis oligosaccharide binding system utilizing positive homotropic allosterism. J. Am. Chem. Soc. 123, 10239–10244 (2001).

Article  CAS  PubMed  Google Scholar 

Droz, A. S., Neidlein, U., Anderson, S., Seiler, P. & Diederich, F. Optically active cyclophane receptors for mono- and disaccharides: the role of bidentate ionic hydrogen bonding in carbohydrate recognition. Helv. Chim. Acta 84, 2243–2289 (2001).

Article  CAS  Google Scholar 

Rusin, O., Lang, K. & Král, V. 1,1′-Binaphthyl-substituted macrocycles as receptors for saccharide recognition. Chem. Eur. J. 8, 655–663 (2002).

Article  CAS  PubMed  Google Scholar 

Wu, X. et al. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev. 42, 8032–8048 (2013).

Article  CAS  PubMed  Google Scholar 

Zhai, W., Sun, X., James, T. D. & Fossey, J. S. Boronic acid-based carbohydrate sensing. Chem. Asian J. 10, 1836–1848 (2015).

Article  CAS  PubMed  Google Scholar 

Webster, C. S., Balduzzi, F. & Davis, A. P. Tricyclic octaurea “temples” for the recognition of polar molecules in water. Org. Biomol. Chem. 21, 525–532 (2023).

Article  CAS  PubMed  Google Scholar 

Li, Q., Zhu, H. & Huang, F. Pillararene-based supramolecular functional materials. Trends Chem. 2, 850–864 (2020).

Article  CAS  Google Scholar 

Yokoya, M., Kimura, S. & Yamanaka, M. Urea derivatives as functional molecules: supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts. Chem. Eur. J. 27, 5601–5614 (2021).

Article  CAS  PubMed  Google Scholar 

Dong, J. & Davis, A. P. Molecular recognition mediated by hydrogen bonding in aqueous media. Angew. Chem. Int. Ed. 60, 8035–8048 (2021).

Article  CAS  Google Scholar 

Davis, A. P. Biomimetic carbohydrate recognition. Chem. Soc. Rev. 49, 2531–2545 (2020).

Article  CAS  PubMed  Google Scholar 

Mooibroek, T. J. et al. A threading receptor for polysaccharides. Nat. Chem. 8, 69–74 (2016).

Article  CAS  PubMed  Google Scholar 

Anderson, S., Neidlein, U., Gramlich, V. & Diederich, F. A new family of chiral binaphthyl-derived cyclophane receptors: complexation of pyranosides. Angew. Chem. Int. Ed. 34, 1596–1600 (1995).

Article  CAS  Google Scholar 

James, T. D., Sandanayake, K. R. A. S. & Shinkai, S. Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem. Int. Ed. 35, 1910–1922 (1996).

Article  Google Scholar 

Yang, W., He, H. & Drueckhammer, D. G. Computer-guided design in molecular recognition: design and synthesis of a glucopyranose receptor. Angew. Chem. Int. Ed. 40, 1714–1718 (2001).

Article  CAS  Google Scholar 

Hubbard, R. D., Horner, S. R. & Miller, B. L. Highly substituted ter-cyclopentanes as receptors for lipid A. J. Am. Chem. Soc. 123, 5810–5811 (2001).

Article  CAS  PubMed  Google Scholar 

Davis, A. P. & James, T. D. in Functional Synthetic Receptors (eds Schrader, T. & Hamilton, A. D.) 45–109 (Wiley-VCH, 2005).

Mazik, M. Recent developments in the molecular recognition of carbohydrates by artificial receptors. RSC Adv. 2, 2630–2642 (2012).

Article  CAS  Google Scholar 

Francesconi, O. & Roelens, S. Biomimetic carbohydrate-binding agents (CBAs): binding affinities and biological activities. ChemBioChem 20, 1329–1346 (2019).

Article  CAS  PubMed  Google Scholar 

Ramos-Soriano, J., Benitez-Benitez, S. J., Davis, A. P. & Galan, M. C. A vibration-induced-emission-based fluorescent chemosensor for the selective and visual recognition of glucose. Angew. Chem. Int. Ed. 60, 16880–16884 (2021).

Article  CAS  Google Scholar 

James, T. D., Sandanayake, K. R. A. S. & Shinkai, S. A glucose-selective molecular fluorescence sensor. Angew. Chem. Int. Ed. 33, 2207–2209 (1994).

Article  Google Scholar 

Striegler, S. & Gichinga, M. G. Disaccharide recognition by binuclear copper(II) complexes. Chem. Commun. 5930–5932 (2008).

Ke, C., Destecroix, H., Crump, M. P. & Davis, A. P. A simple and accessible synthetic lectin for glucose recognition and sensing. Nat. Chem. 4, 718–723 (2012).

Article  CAS  PubMed  Google Scholar 

Destecroix, H. et al. Affinity enhancement by dendritic side chains in synthetic carbohydrate receptors. Angew. Chem. Int. Ed. 54, 2057–2061 (2015).

Article  CAS  Google Scholar 

Leibiger, B., Stapf, M. & Mazik, M. Cycloalkyl groups as building blocks of artificial carbohydrate receptors: studies with macrocycles bearing flexible side-arms. Molecules 27, 7630 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang, Y., Natarajan, R., Ko, Y. H. & Kim, K. Cucurbit[7]uril: a high-affinity host for encapsulation of amino saccharides and supramolecular stabilization of their α-anomers in water. Angew. Chem. Int. Ed. 53, 1003–1007 (2014).

Article  CAS  Google Scholar 

Saha, S., Kauffmann, B., Ferrand, Y. & Huc, I. Selective encapsulation of disaccharide xylobiose by an aromatic foldamer helical capsule. Angew. Chem. Int. Ed. 57, 13542–13546 (2018).

Article  CAS  Google Scholar 

Li, T.-R., Huck, F., Piccini, G. & Tiefenbacher, K. Mimicry of the proton wire mechanism of enzymes inside a supramolecular capsule enables β-selective O-glycosylations. Nat. Chem. 14, 985–994 (2022). This article shows that the neutral molecule-driven supramolecular resorcin[4]arene capsule facilitates highly β-selective glycosylation reactions through proton wires activation.

Article  PubMed  Google Scholar 

Montà-González, G., Sancenón, F., Martínez-Máñez, R. & Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 122, 13636–13708 (2022).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif