Spector LG, Birch J. The epidemiology of hepatoblastoma. Pediatr Blood Cancer. 2012;59(5):776–9. https://doi.org/10.1002/pbc.24215.
Boscarelli A, Levi Sandri GB, Calisti A, et al. Hepatoblastoma in a 14 month-old female. Clin Ter. 2015;166(2):59–61. https://doi.org/10.7417/ct.2015.1815.
Article CAS PubMed Google Scholar
Wu PV, Rangaswami A. Current approaches in hepatoblastoma—new biological insights to inform therapy. Curr Oncol Rep. 2022;24(9):1209–18. https://doi.org/10.1007/s11912-022-01230-2.
Article CAS PubMed Google Scholar
Ranganathan S, Lopez-Terrada D, Alaggio R. Hepatoblastoma and pediatric hepatocellular carcinoma: an update. Pediatr Dev Pathol. 2019;23(2):79–95. https://doi.org/10.1177/1093526619875228.
Nagae G, Yamamoto S, Fujita M, et al. Genetic and epigenetic basis of hepatoblastoma diversity. Nat Commun. 2021;12(1):5423. https://doi.org/10.1038/s41467-021-25430-9.
Article CAS PubMed PubMed Central Google Scholar
Rigault C, Le Borgne F, Demarquoy J. Genomic structure, alternative maturation and tissue expression of the human BBOX1 gene. Biochem Biophys Acta. 2006;1761(12):1469–81. https://doi.org/10.1016/j.bbalip.2006.09.014.
Article CAS PubMed Google Scholar
Tars K, Rumnieks J, Zeltins A, et al. Crystal structure of human gamma-butyrobetaine hydroxylase. Biochem Biophys Res Commun. 2010;398(4):634–9. https://doi.org/10.1016/j.bbrc.2010.06.121.
Article CAS PubMed Google Scholar
Strijbis K, Vaz FM, Distel B. Enzymology of the carnitine biosynthesis pathway. IUBMB Life. 2010;62(5):357–62. https://doi.org/10.1002/iub.323.
Article CAS PubMed Google Scholar
Liao C, Zhang Y, Fan C, et al. Identification of BBOX1 as a therapeutic target in triple-negative breast cancer. Cancer Discov. 2020;10(11):1706–21. https://doi.org/10.1158/2159-8290.Cd-20-0288.
Article CAS PubMed PubMed Central Google Scholar
Wang J, Zhou Y, Zhang D, et al. CRIP1 suppresses BBOX1-mediated carnitine metabolism to promote stemness in hepatocellular carcinoma. Embo J. 2022;41(15): e110218. https://doi.org/10.15252/embj.2021110218.
Article CAS PubMed PubMed Central Google Scholar
Aghajanzadeh T, Tebbi K, Talkhabi M. Identification of potential key genes and miRNAs involved in hepatoblastoma pathogenesis and prognosis. J Cell Commun Signal. 2021;15(1):131–42. https://doi.org/10.1007/s12079-020-00584-1.
Article CAS PubMed Google Scholar
Hooks KB, Audoux J, Fazli H, et al. New insights into diagnosis and therapeutic options for proliferative hepatoblastoma. Hepatology. 2018;68(1):89–102. https://doi.org/10.1002/hep.29672.
Article CAS PubMed Google Scholar
Zhu LR, Zheng W, Gao Q, et al. Epigenetics and genetics of hepatoblastoma: linkage and treatment. Front Genet. 2022;13:1070971. https://doi.org/10.3389/fgene.2022.1070971.
Article CAS PubMed PubMed Central Google Scholar
Murray MJ, Nicholson JC. α-Fetoprotein. Arch Dis Child Educ Pract Ed. 2011;96(4):141–7. https://doi.org/10.1136/adc.2011.213181.
Article CAS PubMed Google Scholar
Zhou S, O’Gorman MRG, Yang F, et al. Glypican 3 as a serum marker for hepatoblastoma. Sci Rep. 2017;7(1):45932. https://doi.org/10.1038/srep45932.
Article CAS PubMed PubMed Central Google Scholar
Sumazin P, Chen Y, Treviño LR, et al. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology. 2017;65(1):104–21. https://doi.org/10.1002/hep.28888.
Article CAS PubMed Google Scholar
Bian X, Liu R, Meng Y, et al. Lipid metabolism and cancer. J Exp Med. 2021;218(1): e20201606. https://doi.org/10.1084/jem.20201606.
Article CAS PubMed Google Scholar
Rivas MP, Aguiar TFM, Maschietto M, et al. Hepatoblastomas exhibit marked NNMT downregulation driven by promoter DNA hypermethylation. Tumor Biol. 2020;42(12):101042832097712. https://doi.org/10.1177/1010428320977124.
Mendoza A, Takemoto Y, Cruzado KT, et al. Controlled lipid β-oxidation and carnitine biosynthesis by a vitamin D metabolite. Cell Chem Biol. 2022;29(4):660-669.e12. https://doi.org/10.1016/j.chembiol.2021.08.008.
Article CAS PubMed Google Scholar
Almannai M, Alfadhel M, El-Hattab AW. Carnitine inborn errors of metabolism. Molecules. 2019;24(18):3251. https://doi.org/10.3390/molecules24183251.
Article CAS PubMed PubMed Central Google Scholar
Zhao M, Zhao L, Xiong X, et al. TMAVA, a metabolite of intestinal microbes, is increased in plasma from patients with liver steatosis, inhibits γ-butyrobetaine hydroxylase, and exacerbates fatty liver in mice. Gastroenterology. 2020;158(8):2266–81. https://doi.org/10.1053/j.gastro.2020.02.033.
Article CAS PubMed Google Scholar
Zhao M, Wei H, Li C, et al. Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy. Nat Commun. 2022;13(1):1757. https://doi.org/10.1038/s41467-022-29060-7.
Article CAS PubMed PubMed Central Google Scholar
Huang J, Tang Y, Li Y, et al. BBOX1 mediates metabolic reprogramming driven by hypoxia and participates in the malignant progress of high-grade serous ovarian cancer. Biochim Biophys Acta Mol cell Res. 2024. https://doi.org/10.1016/j.bbamcr.2024.119830.
Huang J, Hu Y, Jiang H, et al. CHIC risk stratification system for predicting the survival of children with hepatoblastoma: data from children with hepatoblastoma in China. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.552079.
Article PubMed PubMed Central Google Scholar
Gülçin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006;78(8):803–11. https://doi.org/10.1016/j.lfs.2005.05.103.
Article CAS PubMed Google Scholar
Song H, Bucher S, Rosenberg K, et al. Single-cell analysis of hepatoblastoma identifies tumor signatures that predict chemotherapy susceptibility using patient-specific tumor spheroids. Nat Commun. 2022;13(1):4878. https://doi.org/10.1038/s41467-022-32473-z.
留言 (0)