Improving the performance of ZnO/CdS/CZTS thin film solar cell by AMPS-1D numerical tool: effect of the absorber, buffer and window layer parameters

Md. Noumil Tousif, A.A. Sakib Mohamma, Md. Ferdous, A. Hoque, Investigation of different materials as buffer layer in CZTS solar cells using SCAPS. J. Clean Energy Technol. 6(4), 293–296 (2018). https://doi.org/10.18178/JOCET.2018.6.4.477

Article  Google Scholar 

M.A. Ashraf, I. Alam, Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D. Eng. Res. Express 2, 035015 (2020). https://doi.org/10.1088/2631-8695/abade6

Article  ADS  Google Scholar 

A. Husainat, W. Ali, P. Cofie, J. Attia, J. Fuller, A. Darwish, Simulation and analysis method of different back metals contact of CH3NH3PbI3 perovskite solar cell along with electron transport layer TiO2 using MBMT-MAPLE/PLD. American J. Optics and Photon. 8(1), 6 (2020). https://doi.org/10.11648/j.ajop.20200801.12

Article  Google Scholar 

A. Benzetta, M. Abderrezek, M.E. Djeghlal, Numerical Study of the temperature dependence of CZTS-based thin film solar cell. J. Nano- Electron. Phys. 14(2), 02012 (2022). https://doi.org/10.21272/jnep.14(2).02012

Article  Google Scholar 

F.A. Jhuma, M.Z. Shaily, M.J. Rashid, Towards high-efficiency CZTS solar cell through buffer layer optimization. J. Mater. Renew. Sustain. Energy 8(1), 1–7 (2019). https://doi.org/10.1007/s40243-019-0144-1

Article  Google Scholar 

A. Cherouana, R. Labbani, Study of CZTS and CZTSSe solar cells for buffer layers selection. Appl. Surf. Sci. Part 2 (2017). https://doi.org/10.1016/j.apsusc.2017.05.027

Article  Google Scholar 

L.Y. Lin, Y. Qiu, Y. Zhang, H. Zhang, Analysis of effect of Zn (O, S) buffer layer properties on CZTS solar cell. J. Chinese Phys. Lett. 33, 1–4 (2016). https://doi.org/10.1088/025-307X/33/10/107801

Article  ADS  Google Scholar 

A. Ziti, B. Hartiti, H. Labrim, Y. Doubi, H.J.T. Nkuissi, Y. Nouria, S. Fadili, A. Batan, M. Tahri, A. Ridah, Ph. Thevenin, Investigation of CZTS absorber layer deposited by spin coating techniquefor photovoltaic applications. J. Mater. Today 53, 355–360 (2022). https://doi.org/10.1016/j.matpr.2022.01.369

Article  Google Scholar 

B. Zaidi, C. Shekhar, K. Kamli, Z. Hadef, S. Belghit, M.S. Ullah, Junction configuration effect on the performance of In2S3/CZTS Solar Cells. J. Nano- and Electron. Phys. 12(1), 01024-1–01024-3 (2020). https://doi.org/10.21272/jnep.12(1).01024

Article  Google Scholar 

A.D. Adewoyin, M.A. Olopade, O.O. Oyebola, M.A. Chendo, Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D. J. Optik Int. J. Light Electron Optics 176, 132–142 (2019). https://doi.org/10.1016/j.ijleo.2018.09.033

Article  Google Scholar 

N. Kumari, S. Ingole, Enhancement of CZTS photovoltaic device performance with silicon at back-contact: a study using SCAPS-1D. J. Solar Energy 236, 301–307 (2022). https://doi.org/10.1016/j.solener.2022.03.005

Article  ADS  Google Scholar 

A.E.H. Benzetta, A. Mahfoud, D.M. Elamine, Numerical analysis of potential buffer layer for Cu2ZnSnS4 (CZTS) solar cells. Optik 204, 164155 (2020). https://doi.org/10.1016/j.ijleo.2019.164155

Article  Google Scholar 

R. Banerjee, R. Jayakrishnan, R. Banerjee, P. Ayyub, Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J. Phys. Condensed Matter 12(50), 10647–10654 (2000). https://doi.org/10.1088/0953-8984/12/50/325

Article  ADS  Google Scholar 

F. Rahman, J. Hossain, A. Kuddus, S. Tabassum, H.K. Mirza, H.S. Rubel, A.B. Ismail, A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells. Appl. Physics A 126, 145 (2020)

Article  ADS  Google Scholar 

S. Ahmmed, A. Aktar, Md. Ferdous Rahman, J. Hossain, S. Ahmmed, A. Aktar, Md. Ferdous Rahman, J. Hossain, Md. Abu Bakar, Ismail, A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO. Optik Int. J. Light and Electron Optics 223, 165625 (2020). https://doi.org/10.1088/0953-8984/12/50/325

Article  Google Scholar 

J. Löckinger, S. Nishiwaki, T.P. Weiss, B. Bissig, Y.E. Romanyuk, S. Buecheler, A.N. Tiwari, TiO2 as intermediate buffer layer in Cu (In, Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 174, 397–404 (2018). https://doi.org/10.1016/j.solmat.2017.09.030

Article  Google Scholar 

F.-I. Lai, J.-F. Yang, W.-C. Chen, Y.-C. Hsu, S.-Y. Kuo, All-vacuum-deposited bifacial Cu2ZnSnSe4 photovoltaic cells with sputtered Cd-free buffer layer. Int. J. Energy Res. 2023, 1–17 (2023). https://doi.org/10.1155/2023/9215680

Article  Google Scholar 

J. Dai, P. Zhou, L. Junfeng, H. Zheng, J. Guo, F. Wang, G. Ning, X. Chunxiang, The excitonic photoluminescence mechanism and lasing action in band-gap-tunable CdS 1–x Se x nanostructures. Nanoscale (2016). https://doi.org/10.1039/x0xx00000x

Article  Google Scholar 

M. Benhaliliba, ZnO a multifunctional material: physical properties, spectroscopic ellipsometry and surface examination. Optik 241, 167197 (2021)

Article  Google Scholar 

C.E. Benouis, M. Benhaliliba, A. Sanchez Juarez, M.S. Aida, F. Chami, F. Yakuphanoglu, The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films. J. Alloys and Compd. 490(1–2), 62–67 (2010). https://doi.org/10.1016/j.jallcom.2009.10.098

Article  Google Scholar 

F. Daoudi, A. Naas, O. Meglali, R. Boudaira, A. Gueddim, A.M. Saeed, Investigations on the Optimization of Contacts Barrier Height for the Improved Performance of ZnO/CdS/CZTS Solar Cells. Energy Eng. 120(8), 1803–1815 (2023)

Article  Google Scholar 

H. Arbouz, Modeling of a tandem solar cell structure based on CZTS and CZTSe absorber materials. Int. J. Comput. Exp. Sci. Eng. (IJCESEN) 8(1), 14–18 (2022)

Article  Google Scholar 

C.E.H. Merzouk, S. Bensmaine, L. Ghalmi, A. Aissar, Comparative study by simulation between two structures CdS/CZTS and ZnS/CZTS via SCAPS-ID software. Chalcogenide Lett. 21(2), 113–124 (2024)

Article  Google Scholar 

K. Dris, M. Benhaliliba, A. Ayeshamariam, A. Roy, K. Kaviyarasu, Improving the perovskite solar cell by insertion of methyl ammonium tin oxide and cesium tin chloride as absorber layers: Scaps 1d study based on experimental studies. J. Opt. (2024). https://doi.org/10.1007/s12596-024-01996-7

Article  Google Scholar 

M. Barrera, F. Rubinelli, I. Rey-Stolle, J. Plá, Numerical simulation of Ge solar cells using D-AMPS-1D code. Physica B: Condensed Matt. 407(16), 3282–3284 (2012). https://doi.org/10.1016/j.physb.2011.12.087

Article  ADS  Google Scholar 

S. Ouedraogo, R. Sam, F. Ouedraogo, M.B. Kebre, J.M. Ndjaka, F. Zougmore, Optimization of copper indium gallium di-selenide (CIGS) based solar cells by back grading. J. Ovonic Res. 9, 95–103 (2013). https://doi.org/10.1109/AFRCON.2013.6757813

Article  Google Scholar 

I. Bouchama, S. Ali Saoucha, Effect of wide band-gap TCO properties on the bifacial CZTS thin-films solar cells performances. Optik Int. J. Light and Electron Optics 144, 370–377 (2017). https://doi.org/10.1016/j.ijleo.2017.07.009

Article  Google Scholar 

W.Zhao, W. Zhou, X. Miao,Numerical Simulation of CZTS thin Film Solar Cell,7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS),pp 502–505,2012, 978–1–4673–1124–3/12/$31.00 ©2012 IEE.

H.J.T. Nkuissi, L.L.M. Ngueyep, A. Dadjé, G.M.T. Gnamsi, ACh. Chéagé, B. Hartiti, J.M. Ndjaka, Effect of chemical and physical parameters on the electrical outputs of Cu2Zn1−yFeySnS4-based solar cells by wxAMPS. Int. J. Photoenergy 2020, 8840411 (2020). https://doi.org/10.1155/2020/8840411

Article  Google Scholar 

A. AitAbdelkadir, EssaadiaOublal, mustapha sahal, alain gibaud, numerical simulation and optimization of n-Al-ZnO/n-CdS/p-CZTSe/p-NiO (HTL)/Mo solar cell system using SCAPS-1D. Results in Optics 8, 100257 (2022). https://doi.org/10.1016/j.rio.2022.100257

Article  Google Scholar 

A. Benami, Effect of CZTS parameters on photovoltaic solar cell from numerical simulation. J. Energy and Power Eng. (2019). https://doi.org/10.17265/1934-8975/2019.01.003

Article  Google Scholar 

H. Ferhati, F. Djeffal, Graded band-gap engineering for increased efficiency in CZTS solar cells. Optical Mater. 76, 393–399 (2018). https://doi.org/10.1016/j.optmat.2018.01.006

Article  ADS  Google Scholar 

R.M. SrinibasaPadhy, U.P. Singh, Graded band gap structure of kesterite material using bilayer of CZTS and CZTSe for enhanced performance: a numerical approach. Sol. Energy 216, 601–609 (2021). https://doi.org/10.1016/j.solener.2021.01.057

Article  Google Scholar 

B. Herbert, Michaelson, the work function of the elements and its periodicity. J. Appl. Phys. 48, 4729 (1977). https://doi.org/10.1063/1.323539

Article  Google Scholar 

S.H. Zyoud, A.H. Zyoud, N.M. Ahmed, A.R. Prasad, S.N. Khan, A.F.I. Abdelkader, M. Shahwan, Numerical modeling of high conversion efficiency FTO/ZnO/CdS/CZTS/MO thin film-based solar cells: using SCAPS-1D software. Crystals 11(12), 1468 (2021). https://doi.org/10.3390/cryst11121468

Article  Google Scholar 

K.C. Devendra, D.K. Shah, S. Kumar, N. Bhattarai, D.R. Adhikari, K.B. Khattri, M. Shaheer Akhtar, A. Umar, A.A. Ibrahim, M.A.M. Alhamami, S. Baskoutas, O. Bong Yang, Enhanced solar cell efficiency: copper zinc tin sulfide absorber thickness and defect density analysis. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-11125-y

Article  Google Scholar 

留言 (0)

沒有登入
gif