Unlocking the Potential of Arbuscular Mycorrhizal Fungi: Exploring Role in Plant Growth Promotion, Nutrient Uptake Mechanisms, Biotic Stress Alleviation, and Sustaining Agricultural Production Systems

Abd Elgawad H, Ahmed M, Mohammed AE, Alotaibi MO, Yehia RS, Selim S, Saleh AM, Beemster GT, Sheteiwy MS (2022) Increasing atmospheric CO2 differentially supports arsenite stress mitigating impact of arbuscular mycorrhizal fungi in wheat and soybean plants. Chemosphere 296:134044. https://doi.org/10.1016/j.chemosphere.2022.134044

Article  CAS  PubMed  Google Scholar 

Abdel Latef AAH, Miransari M (2014) The role of arbuscular mycorrhizal fungi in alleviation of salt stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 23–38. https://doi.org/10.1007/978-1-4939-0721-2_2

Chapter  Google Scholar 

Abdul Malik NA, Kumar IS, Nadarajah K (2020) Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int J Mol Sci 21(3):963. https://doi.org/10.3390/ijms21030963

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguilera P, Ortiz N, Becerra N, Turrini A, Gaínza-Cortés F, Silva-Flores P, Aguilar-Paredes A, Romero JK, Jorquera-Fontena E, Mora MDLL, Borie F (2022) Application of arbuscular mycorrhizal fungi in vineyards: water and biotic stress under a climate change scenario: new challenge for Chilean grapevine crop. Front Microbiol 13:826571. https://doi.org/10.3389/fmicb.2022.826571

Article  PubMed  PubMed Central  Google Scholar 

Aguk JA, Karanja N, Schulte-Geldermann E, Bruns C, Kinyua Z, Parker M (2018) Control of bacterial wilt (Ralstonia solanacearum) in potato (Solanum tuberosum) using rhizobacteria and arbuscular mycorrhiza fungi. African J Food Agric Nutr Dev 18(2):13371–13387. https://doi.org/10.18697/ajfand.82.16905

Article  CAS  Google Scholar 

Ahmad B, Raina A, Khan S (2019) Impact of biotic and abiotic stresses on plants, and their responses. In: Wani SH (ed) Disease resistance in crop plants: molecular, genetic and genomic perspectives. Springer Cham, Switzerland AG, pp 1–9. https://doi.org/10.1007/978-3-030-20728-1_12

Google Scholar 

Ahmad M, Ali Q, Hafeez MM, Malik A (2021) Improvement for biotic and abiotic stress tolerance in crop plants. Biol Clin Sci Res J 2021(1):e004. https://doi.org/10.54112/bcsrj.v2021i1.50

Article  Google Scholar 

Akiyama K, Matsuzaki K-I, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 453(7043):824–827. https://doi.org/10.1038/nature03608

Article  CAS  Google Scholar 

Al-Askar A, Rashad Y (2010) Arbuscular mycorrhizal fungi: a biocontrol agent against common. Plant Pathol J 9(1):31–38

Article  Google Scholar 

Albright MBN, Louca S, Winkler DE, Feeser KL, Haig SJ, Whiteson KL, Emerson JB, Dunbar J (2022) Solutions in microbiome engineering: prioritizing barriers to organism establishment. ISME J 16(2):331–338. https://doi.org/10.1038/s41396-021-01088-5

Article  PubMed  Google Scholar 

Alejandro P, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD (2017) The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci Rep 7:16409. https://doi.org/10.1038/s41598-017-16697-4

Article  CAS  Google Scholar 

Al-Hmoud G, Al-Momany A (2017) Effect of four mycorrhizal products on squash plant growth and its effect on physiological plant elements. Adv Crop Sci Tech 5:260. https://doi.org/10.4172/2329-8863.1000260

Article  CAS  Google Scholar 

Al-Karaki GN (2013) The role of mycorrhiza in the reclamation of degraded lands in arid environments. In: Shahid SA, Taha FK, Abdelfattah MA (eds) Developments in soil classification, land use planning and policy implications. Springer, Dordrecht, pp 823–836. https://doi.org/10.1007/978-94-007-5332-7_48

Allen MF (2011) Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems. J Arid Land 3(3):155–163. https://doi.org/10.3724/SP.J.1227.2011.00155

Article  Google Scholar 

Álvarez C, Navarro JA, Molina-Heredia FP, Mariscal V (2020) Endophytic colonization of rice (Oryza sativa L.) by the symbiotic strain Nostoc punctiforme PCC 73102. Mol Plant Microbe Interact 33(8):1040–1045. https://doi.org/10.1094/MPMI-01-20-0015-SC

Article  PubMed  Google Scholar 

Amanullah A, Zakirullah M (2010) Timing and rate of phosphorus application influence maize phenology, yield and profitability in Northwest Pakistan. Egypt Acad J Biol Sci H Bot 1(1):29–39. https://doi.org/10.21608/eajbsh.2010.17014

Article  Google Scholar 

Amballa H, Bhumi NR (2016) Significance of arbuscular mycorrhizal fungi and rhizosphere microflora in plant growth and nutrition. In: Choudhary DK, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 417–452. https://doi.org/10.1007/978-981-10-2854-0_19

Chapter  Google Scholar 

Amiri R, Nikbakht A, Etemadi N, Sabzalian MR (2017) Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis 73(1):15–25. https://doi.org/10.1007/s13199-016-0466-z

Article  CAS  Google Scholar 

Anand K, Pandey GK, Kaur T, Pericak O, Olson C, Mohan R, Akansha K, Yadav A, Devi R, Kour D, Rai AK, Kumar M, Yadav AN (2022) Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability. J Appl Biol 10(1):90–107. https://doi.org/10.7324/JABB.2022.10s111

Article  CAS  Google Scholar 

Andrino A, Guggenberger G, Sauheitl L, Burkart S, Boy J (2021) Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Biol Fertil Soils 57(1):47–64. https://doi.org/10.1007/s00374-020-01505-5

Article  CAS  Google Scholar 

Arpanahi AA, Feizian M, Mehdipourian G, Khojasteh DN (2020) Arbuscular mycorrhizal fungi inoculation improves essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. Eur J Soil Biol 100:103217. https://doi.org/10.1016/j.ejsobi.2020.103217

Article  CAS  Google Scholar 

Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8(1):1–10. https://doi.org/10.1111/j.1462-2920.2005.00942.x

Article  CAS  PubMed  Google Scholar 

Aseel DG, Rashad YM, Hammad SM (2019) Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against Tomato Mosaic Virus. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-46281-x

Article  CAS  Google Scholar 

Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91(11):3252–3260. https://doi.org/10.1890/09-1849.1

Article  PubMed  Google Scholar 

Aslam MM, Karanja J, Bello SK (2019) Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiol Mol Plant Pathol 106:232–237. https://doi.org/10.1016/j.pmpp.2019.02.010

Article  CAS  Google Scholar 

Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50(2):305–316. https://doi.org/10.1007/s11099-012-0024-8

Article  CAS  Google Scholar 

Baghaie AH, Aghili F, Jafarinia R (2019) Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Environ Sci Pollut Res 26(30):30794–30807. https://doi.org/10.1007/s11356-019-06237-0

Article  CAS  Google Scholar 

Bagheri V, Shamshiri MH, Shirani H, Roosta HR (2018) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J Agric Sci Technol 14:1591–1604. http://hdl.handle.net/123456789/4427

Bago B, Azcon-Aguilar C, Goulet A, Piche Y (1998) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139(2):375–388. https://doi.org/10.1046/j.1469-8137.1998.00199.x

Article  Google Scholar 

Bagy HMK, Hassan EA, Nafady NA, Dawood MF (2019) Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biol Control 134:103–113. https://doi.org/10.1016/j.biocontrol.2019.03.005

Article  Google Scholar 

Bagyaraj DJ, Sridhar KR, Revanna A (2022) Arbuscular mycorrhizal fungi influence crop productivity, plant diversity, and ecosystem services. In: Rajpal VR, Singh I, Navi SS (eds) Fungal diversity, ecology and control management. Series: Fungal Biology. Springer, Singapore, pp 345–362. https://doi.org/10.1007/978-981-16-8877-5_16

Chapter  Google Scholar 

Bais H, Weir T, Perry L, Gilroy S, Vivanco J (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

Article  CAS  PubMed  Google Scholar 

Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20(9):1055–1062. https://doi.org/10.1094/MPMI-20-9-1055

Article  CAS 

留言 (0)

沒有登入
gif