Enhancing radiative cooling power using ultra-broadband near-unit spectrally selective thermal emitters based on metamaterial structure

C.A. Okoronkwo, K.N. Nwaigwe, N.V. Ogueke, E.E. Anyanwu, D.C. Onyejekwe, P.E. Ugwuoke, An experimental investigation of the passive cooling of a building using nighttime radiant cooling. Int. J. Green Energy 11(10), 1072–1083 (2014). https://doi.org/10.1080/15435075.2013.829775

Article  Google Scholar 

Y. Li et al., Ultra-broadband thermal radiator for daytime passive radiative cooling based on single dielectric SiO2 on metal Ag. Energy Rep. 8, 852–859 (2022). https://doi.org/10.1016/j.egyr.2021.12.026

Article  Google Scholar 

J. Liang et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10, 1 (2023). https://doi.org/10.1093/nsr/nwac208

Article  Google Scholar 

D. Karamanev, The effect of anthropogenic heat emissions on global warming. EGUsphere. 5, 1–18 (2022). https://doi.org/10.5194/egusphere-2022-5

Article  Google Scholar 

S. Sadrizadeh, S. Holmberg, How safe is it to neglect thermal radiation in indoor environment modeling with high ventilation rates 11, 1–5 (2015)

Y. You et al., Effect of surface microstructure on the heat dissipation performance of heat sinks used in electronic devices. Micromachines 12(3), 265 (2021). https://doi.org/10.3390/mi12030265

Article  Google Scholar 

A.A. Almubarak, The effects of heat on electronic components. Int. J. Eng. Res. Appl. 07(05), 52–57 (2017). https://doi.org/10.9790/9622-0705055257

Article  Google Scholar 

H. Lee, T. Kim, M.F. Tolessa, H.H. Cho, Enhancing radiative cooling performance using metal-dielectric-metal metamaterials. J. Mech. Sci. Technol. 31(11), 5107–5112 (2017). https://doi.org/10.1007/s12206-017-1004-5

Article  Google Scholar 

T. Allmendinger, The real cause of global warming and its implications. Int. J. Res. Environ. Sci. 3(4), 33–41 (2017). https://doi.org/10.20431/2454-9444.0304006

Article  Google Scholar 

J.P. Bijarniya, J. Sarkar, P. Maiti, Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 133, 110263 (2020). https://doi.org/10.1016/j.rser.2020.110263

Article  Google Scholar 

B.R. Mishra, S. Sundaram, N.J. Varghese, K. Sasihithlu, Disordered metamaterial coating for daytime passive radiative cooling. AIP Adv. 11(10), 3 (2021). https://doi.org/10.1063/5.0064572

Article  Google Scholar 

P. Berdahl, M. Martin, F. Sakkal, Performances thermiques des panneaux a refroidissement radiative. Int. J. Heat Mass Transf. 26(6), 871–880 (1983). https://doi.org/10.1016/S0017-9310(83)80111-2

Article  ADS  Google Scholar 

A. Kong, B. Cai, P. Shi, X. Yuan, Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Opt. Express 27(21), 30102 (2019). https://doi.org/10.1364/oe.27.030102

Article  ADS  Google Scholar 

C. Lin et al., A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34(12), 1–10 (2022). https://doi.org/10.1002/adma.202109350

Article  Google Scholar 

Y. Zhai et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 35(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899

Article  ADS  Google Scholar 

T.S. Eriksson, S.J. Jiang, C.G. Granqvist, Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive RF-sputtering. Sol. Energy Mater. 12(5), 319–325 (1985)

Article  ADS  Google Scholar 

W. Li, M. Dong, L. Fan, J.J. John, Z. Chen, S. Fan, Nighttime radiative cooling for water harvesting from solar panels. ACS Photonics 8(1), 269–275 (2020)

Article  Google Scholar 

A.H.H. Ali, H. Saito, I.M.S. Taha, K. Kishinami, I.M. Ismail, Effect of aging, thickness and color on both the radiative properties of polyethylene films and performance of the nocturnal cooling unit. Energy Convers. Manag. 39(2), 87–93 (1998). https://doi.org/10.1016/s0196-8904(96)00174-4

Article  ADS  Google Scholar 

M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater 3(8), 1047–1051 (2015). https://doi.org/10.1002/adom.201500119

Article  Google Scholar 

M. Chen, D. Pang, X. Chen, H. Yan, Enhancing infrared emission behavior of polymer coatings for radiative cooling applications. J. Phys. D Appl. Phys. 54(29), 295501 (2021). https://doi.org/10.1088/1361-6463/abfb19

Article  Google Scholar 

D. Wu et al., The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 139, 104–111 (2018)

Article  Google Scholar 

A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014)

Article  ADS  Google Scholar 

M. Chen et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241

Article  ADS  Google Scholar 

M. Chen, D. Pang, X. Chen, H. Yan, Investigating the effective radiative cooling performance of random dielectric microsphere coatings. Int. J. Heat Mass Transf. 173, 121263 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121263

Article  Google Scholar 

H. Ma et al., Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling. Sol. Energy Mater. Sol. Cells 212, 110584 (2020). https://doi.org/10.1016/j.solmat.2020.110584

Article  Google Scholar 

B. Xiang et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600

Article  Google Scholar 

Z. Huang, X. Ruan, Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 104, 890–896 (2017)

Article  ADS  Google Scholar 

M. Chen, D. Pang, H. Yan, Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres. Appl. Therm. Eng. 216, 119125 (2022). https://doi.org/10.1016/j.applthermaleng.2022.119125

Article  Google Scholar 

Y.N. Liu et al., Ultra-broadband infrared metamaterial absorber for passive radiative cooling. Chinese Phys. Lett. 38(3), 1–6 (2021). https://doi.org/10.1088/0256-307X/38/3/034201

Article  Google Scholar 

M.A. Kecebas, M.P. Menguc, A. Kosar, K. Sendur, Spectrally selective filter design for passive radiative cooling. J. Opt. Soc. Am. B 47(4), 1173 (2020). https://doi.org/10.1364/josab.384181

Article  ADS  Google Scholar 

M. Zu, F. Yan, C. Lv, M. Li, W. Hu, H. Cheng, Daytime passive radiative cooler using zeolite. J. Porous Mater. 29(1), 1–8 (2022). https://doi.org/10.1007/s10934-021-01143-8

Article  Google Scholar 

S. Topic, Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization designing radiative cooling metamaterials for passive thermal management by particle swarm optimization. Chin. Phys. 32(5), 057802 (2023). https://doi.org/10.1088/1674-1056/acc061

Article  Google Scholar 

A.B. Numan, M.S. Sharawi, Extraction of material parameters for metamaterials using a full-wave simulator. IEEE Antennas Propag. Mag. 55(5), 202–211 (2015). https://doi.org/10.1109/MAP.2013.6735515

Article  ADS  Google Scholar 

V.G. Veselago, The electrodynamic of substances with simultaneous negative values of e and μ. Sov. Phys. Uspekhi 10(4), 509–514 (1968)

Article  ADS  Google Scholar 

J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966 (2000)

Article  ADS  Google Scholar 

S. Tamiru, F. Tolessa, B. Alemu, S. Tiruneh, A. Belay, G. Alemu, T. Gurumurthi, Numerical study of high spectral efficiency and high-temperature energy harvesting metamaterial emitter to improve thermophotovoltaic performance. Int. J. Photoenergy 2023(1), 5442031 (2023)

Google Scholar 

F.T. Maremi, N. Lee, G. Choi, T. Kim, H.H. Cho, Design of multilayer ring emitter based on metamaterial for thermophotovoltaic applications. Energies 11(9), 2299 (2018). https://doi.org/10.3390/en11092299

Article  Google Scholar 

N. Li et al., Selective spectral optical properties and structure of aluminum phosphate for daytime passive radiative cooling application. Sol. Energy Mater. Sol. Cells 194, 103–110 (2019). https://doi.org/10.1016/j.solmat.2019.01.036

Article  Google Scholar 

H. Bao, C. Yan, B. Wang, X. Fang, C.Y. Zhao, X. Ruan, Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. S

留言 (0)

沒有登入
gif