Hydrolyzed cow colostrum extract (BCFM) inhibits alpha-MSH-induced melanogenesis in B16F1 cells via regulation of the MC1R-cAMP signaling pathway

Azam MS, Kim JI, Choi CG, Choi J, Lee B, Kim HR (2021) Sargahydroquinoic acid suppresses hyperpigmentation by cAMP and ERK1/2-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells. Foods 23:2254. https://doi.org/10.3390/foods10102254

Article  CAS  Google Scholar 

Bellei B, Maresca V, Flori E, Pitisci A, Larue L, Picardo M (2010) p38 regulates pigmentation via proteasomal degradation of tyrosinase. J Biol Chem 285:7288–7299. https://doi.org/10.1074/jbc.M109.070573

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhandari D, Rafiq S, Gat Y, Gat P, Waghmare R, Kumar V (2020) A review on bioactive peptides: physiological functions, bioavailability and safety. Int J Pept Res Ther 26:139–150. https://doi.org/10.1007/s10989-019-09823-5

Article  CAS  Google Scholar 

Biadała A, Szablewski T, Cegielska-Radziejewska R, Lasik-Kurdyś M, Adzahan NM (2023) The evaluation of activity of selected lactic acid bacteria for bioconversion of milk and whey from goat milk to release biomolecules with antibacterial activity. Molecules 28:3696. https://doi.org/10.3390/molecules28093696

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breathnach AC, Nazzaro-Porro M, Passi S, Zina G (1989) Azelaic acid therapy in disorders of pigmentation. Clin Dermatol 7:106–119. https://doi.org/10.1016/0738-081X(89)90061-8

Article  CAS  PubMed  Google Scholar 

Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84:539–549. https://doi.org/10.1111/j.1751-1097.2007.00226.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buckley JD, Brinkworth GD, Abbott MJ (2003) Effect of bovine colostrum on anaerobic exercise performance and plasma insulin-like growth factor I. J Sports Sci 21:577–588. https://doi.org/10.1080/0264041031000101935

Article  PubMed  Google Scholar 

Chang TS (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10:2440–2475. https://doi.org/10.3390/ijms10062440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen WC, Tseng TS, Hsiao NW, Lin YL, Wen ZH, Tsai CC, Lee YC, Lin HH, Tsai KC (2015) Discovery of highly potent tyrosinase inhibitor, T1, with significant anti-melanogenesis ability by zebrafish in vivo assay and computational molecular modeling. Sci Rep 23:7995. https://doi.org/10.1038/srep07995

Article  CAS  Google Scholar 

Choi H, Ahn S, Lee BG, Chang I, Hwang JS (2005) Inhibition of skin pigmentation by an extract of Lepidium apetalum and its possible implication in IL-6 mediated signaling. Pigment Cell Res 18:439–446. https://doi.org/10.1111/j.1600-0749.2005.00266.x

Article  CAS  PubMed  Google Scholar 

Curto EV, Kwong C, Hermersdörfer H, Glatt H, Santis C, Virador V, Hearing VJ Jr, Dooley TP (1999) Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 57:663–672. https://doi.org/10.1016/S0006-2952(98)00340-2

Article  CAS  PubMed  Google Scholar 

D’Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17:1144. https://doi.org/10.3390/ijms17071144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzpatrick TB, Arndt KA, El Mofty AM, Pathak MA (1966) Hydroquinone and psoralens in the therapy of hypermelanosis and vitiligo. Arch Dermatol 93:589–600. https://doi.org/10.1001/archderm.1966.01600230093025

Article  CAS  PubMed  Google Scholar 

Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S (1995) Effects of alpha- and beta-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci Biotechnol Biochem 59:143–144. https://doi.org/10.1271/bbb.59.143

Article  CAS  PubMed  Google Scholar 

Griffiths CE, Cumberbatch M, Tucker SC, Dearman RJ, Andrew S, Headon DR, Kimber I (2001) Exogenous topical lactoferrin inhibits allergen-induced Langerhans cell migration and cutaneous inflammation in humans. Br J Dermatol 144:715–725. https://doi.org/10.1046/j.1365-2133.2001.04125.x

Article  CAS  PubMed  Google Scholar 

Han JS, Sung JH, Lee SK (2016) Antimelanogenesis activity of hydrolyzed ginseng extract (GINST) via inhibition of JNK mitogen-activated protein kinase in B16F10 cells. J Food Sci 81:2085–2092. https://doi.org/10.1111/1750-3841.13380

Article  CAS  Google Scholar 

Hartog A, Leenders I, van der Kraan PM, Garssen J (2007) Anti-inflammatory effects of orally ingested lactoferrin and glycine in different zymosan-induced inflammation models: evidence for synergistic activity. Int Immunopharmacol 15:1784–1792. https://doi.org/10.1016/j.intimp.2007.09.019

Article  CAS  Google Scholar 

Hermanns JF, Piérard-Franchimont C, Piérard GE (2000) Skin colour assessment in safety testing of cosmetics. An Overview. Int J Cosmet Sci 22:67–71. https://doi.org/10.1046/j.1467-2494.2000.00021.x

Article  CAS  PubMed  Google Scholar 

Hong JP, Park SW (2014) The combined effect of recombinant human epidermal growth factor and erythropoietin on full-thickness wound healing in diabetic rat model. Int Wound J 11:373–378. https://doi.org/10.1111/j.1742-481X.2012.01100.x

Article  PubMed  Google Scholar 

Hong GP, Min SG, Jo YJ (2019) Anti-oxidative and anti-aging activities of porcine by-product collagen hydrolysates produced by commercial proteases: effect of hydrolysis and ultrafiltration. Molecules 24:1104. https://doi.org/10.3390/molecules24061104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsiao JJ, Fisher DE (2014) The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys 563:28–34. https://doi.org/10.1016/j.abb.2014.07.019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu JY, Lin HH, Li TS, Tseng CY, Wong Y, Chen JH (2020) Anti-melanogenesis effects of lotus seedpod in vitro and in vivo. Nutrients 12:3535. https://doi.org/10.3390/nu12113535

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang B, Chang H, Na YJ, Kang YG, Kim BG, Park JS (2013) Extract of enzyme-hydrolyzed green tea seed as potent melanin synthesis inhibitor. Bull Korean Chem Soc 34:2199–2202. https://doi.org/10.5012/bkcs.2013.34.7.2199

Article  CAS  Google Scholar 

Kotsis Y, Mikellidi A, Aresti C, Persia E, Sotiropoulos A, Panagiotakos DB, Antonopoulou S, Nomikos T (2018) A low-dose, 6-week bovine colostrum supplementation maintains performance and attenuates inflammatory indices following a Loughborough Intermittent Shuttle Test in soccer players. Eur J Nutr 57:1181–1195. https://doi.org/10.1007/s00394-017-1401-7

Article  CAS  PubMed  Google Scholar 

Kovacs D, Maresca V, Flori E, Mastrofrancesco A, Picardo M, Cardinali G (2020) Bovine colostrum induces the differentiation of human primary keratinocytes. FASEB J 34:6302–6321. https://doi.org/10.1096/fj.201900103RRR

Article  CAS  PubMed  Google Scholar 

Kumari S, Thing STG, Verma NK, Gautam HK (2018) Melanogenesis inhibitors. Acta Derm Venereol 98:924–931. https://doi.org/10.2340/00015555-3002

Article  CAS  PubMed  Google Scholar 

Lim YJ, Lee EH, Kang TH, Ha SK, Oh MS, Kim SM, Yoon TJ, Kang C, Park JH, Kim SY (2009) Inhibitory effects of arbutin on melanin biosynthesis of alpha-melanocyte stimulating hormone-induced hyperpigmentation in cultured brownish guinea pig skin tissues. Arch Pharm Res 32:367–373. https://doi.org/10.1007/s12272-009-1309-8

Article  CAS  PubMed 

留言 (0)

沒有登入
gif