Glucose metabolism in glioma: an emerging sight with ncRNAs

Kim SM, et al. Glioblastoma-educated mesenchymal stem-like cells promote glioblastoma infiltration via extracellular matrix remodelling in the tumour microenvironment. Clin Transl Med. 2022;12(8):e997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen R, et al. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14(2):284–97.

Article  PubMed  PubMed Central  Google Scholar 

Gladson CL, Prayson RA, Liu WM. The pathobiology of glioma tumors. Annu Rev Pathol. 2010;5:33–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El Khayari A, et al. Metabolic rewiring in Glioblastoma Cancer: EGFR, IDH and Beyond. Front Oncol. 2022;12:901951.

Article  PubMed  PubMed Central  Google Scholar 

Bader JM, et al. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med. 2023;4(1):100877.

Article  CAS  PubMed  Google Scholar 

Chen R, Cohen AL, Colman H. Targeted therapeutics in patients with high-Grade Gliomas: past, Present, and Future. Curr Treat Options Oncol. 2016;17(8):42.

Article  PubMed  Google Scholar 

Yang K, et al. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer. 2022;21(1):39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicholson JG, Fine HA. Diffuse glioma heterogeneity and its therapeutic implications. Cancer Discov. 2021;11(3):575–90.

Article  CAS  PubMed  Google Scholar 

de Groot JF, Sulman EP, Aldape KD. Multigene sets for clinical application in glioma. J Natl Compr Canc Netw. 2011;9(4):449–56. quiz 457.

Article  PubMed  Google Scholar 

Poff A, et al. Targeting the Warburg effect for cancer treatment: ketogenic diets for management of glioma. Semin Cancer Biol. 2019;56:135–48.

Article  CAS  PubMed  Google Scholar 

Pavlova NN, Thompson CB. Emerg Hallm Cancer Metabolism Cell Metab. 2016;23(1):27–47.

CAS  Google Scholar 

Yoshida GJ. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res. 2015;34:111.

Article  PubMed  PubMed Central  Google Scholar 

El Hassouni B, et al. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin Cancer Biol. 2020;60:238–48.

Article  PubMed  Google Scholar 

Wen PY, et al. Response Assessment in Neuro-Oncology clinical trials. J Clin Oncol. 2017;35(21):2439–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han W, et al. Emerging roles and therapeutic interventions of aerobic glycolysis in Glioma. Onco Targets Ther. 2020;13:6937–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo J, et al. Glycolysis rate-limiting enzymes: novel potential regulators of rheumatoid arthritis pathogenesis. Front Immunol. 2021;12:779787.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corcoran SE, O’Neill LA. HIF1α and metabolic reprogramming in inflammation. J Clin Invest. 2016;126(10):3699–707.

Article  PubMed  PubMed Central  Google Scholar 

Park JH, Pyun WY, Park HW. Cancer Metabolism: phenotype, signaling and therapeutic targets. Cells, 2020. 9(10).

Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in Oncology. Cell. 2019;179(5):1033–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grillone K, et al. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic dark matter. J Exp Clin Cancer Res. 2020;39(1):117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goyal B, et al. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 2021;1875(2):188502.

Article  CAS  PubMed  Google Scholar 

Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers. Trends Genet. 2022;38(4):379–94.

Article  CAS  PubMed  Google Scholar 

Feng H, et al. Effects of writers, erasers and readers within miRNA-related m6A modification in cancers. Cell Prolif. 2023;56(1):e13340.

Article  CAS  PubMed  Google Scholar 

Kilikevicius A, Meister G, Corey DR. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res. 2022;50(2):617–34.

Article  CAS  PubMed  Google Scholar 

Isa AI. Exploring signaling pathway crosstalk in glioma by mapping miRNA and WNT pathways: a review. Int J Biol Macromol. 2024;257(Pt 2):128722.

Article  CAS  PubMed  Google Scholar 

Jiménez-Morales JM, et al. MicroRNA delivery systems in glioma therapy and perspectives: a systematic review. J Control Release. 2022;349:712–30.

Article  PubMed  Google Scholar 

Dai L, et al. Systematic characterization and biological functions of non-coding RNAs in glioblastoma. Cell Prolif. 2023;56(3):e13375.

Article  CAS  PubMed  Google Scholar 

Nie S, et al. miR-495 mediates metabolic shift in glioma cells via targeting Glut1. J Craniofac Surg. 2015;26(2):e155–8.

Article  PubMed  Google Scholar 

Kwak S, et al. miR-3189-targeted GLUT3 repression by HDAC2 knockdown inhibits glioblastoma tumorigenesis through regulating glucose metabolism and proliferation. J Exp Clin Cancer Res. 2022;41(1):87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan YJ, et al. MiR-106a: promising biomarker for cancer. Bioorg Med Chem Lett. 2016;26(22):5373–7.

Article  CAS  PubMed  Google Scholar 

Daneshpour M, Ghadimi-Daresajini A. Overview of miR-106a Regulatory roles: from Cancer to Aging. Bioeng (Basel), 2023. 10(8).

Dai DW, et al. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM. BMC Cancer. 2013;13:478.

Article  PubMed  PubMed Central  Google Scholar 

Kim S, et al. microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer. Oncogene. 2018;37(22):2982–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suriya Muthukumaran N et al. MicroRNAs as Regulators Cancer Cell Energy Metabolism J Pers Med, 2022. 12(8).

留言 (0)

沒有登入
gif