Wee1 inhibitor PD0166285 sensitized TP53 mutant lung squamous cell carcinoma to cisplatin via STAT1

Niu Z, Jin R, Zhang Y, Li H. Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther. 2022. https://doi.org/10.1038/s41392-022-01200-x.

Article  PubMed  PubMed Central  Google Scholar 

Lau SCM, Pan Y, Velcheti V, Wong KK. Squamous cell lung cancer: current landscape and future therapeutic options. Cancer Cell. 2022;40(11):1279–93.

Article  CAS  PubMed  Google Scholar 

Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.

Article  CAS  PubMed  Google Scholar 

Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Global Health. 2019. https://doi.org/10.5334/aogh.2419.

Article  Google Scholar 

Ruiz EJ, Diefenbacher ME, Nelson JK, Sancho R, Pucci F, Chakraborty A, Moreno P, Annibaldi A, Liccardi G, Encheva V, et al. LUBAC determines chemotherapy resistance in squamous cell lung cancer. J Exp Med. 2019;216(2):450–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yin Y, Shen Q, Tao R, Chang W, Li R, Xie G, Liu W, Zhang P, Tao K. Wee1 inhibition can suppress tumor proliferation and sensitize p53 mutant colonic cancer cells to the anticancer effect of irinotecan. Mol Med Reports. 2017. https://doi.org/10.3892/mmr.2017.8230.

Article  Google Scholar 

Van Linden AA, Baturin D, Ford JB, Fosmire SP, Gardner L, Korch C, Reigan P, Porter CC. Inhibition of Wee1 sensitizes cancer cells to antimetabolite chemotherapeutics In Vitro and In Vivo, independent of p53 functionality. Mol Cancer Ther. 2013;12(12):2675–84.

Article  PubMed  PubMed Central  Google Scholar 

Zhou B-BS, Bartek J. Targeting the checkpoint kinases chemosensitization versus chemoprotection. Nat Rev Cancer. 2004;4(3):216–25.

Article  CAS  PubMed  Google Scholar 

Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009;136(5):823–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luserna G, di Rorà A, Cerchione C, Martinelli G, Simonetti G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J Hematol Oncol. 2020. https://doi.org/10.1186/s13045-020-00959-2.

Article  Google Scholar 

Hu Z, Li L, Lan W, Wei X, Wen X, Wu P, Zhang X, Xi X, Li Y, Wu L, et al. Enrichment of Wee1/CDC2 and NF-κB Signaling Pathway constituents mutually contributes to CDDP resistance in human osteosarcoma. Cancer Res Treat. 2022;54(1):277–93.

Article  CAS  PubMed  Google Scholar 

Yang X, Hu X, Yin J, Li W, Fu Y, Yang B, Fan J, Lu F, Qin T, Kang X, et al. Comprehensive multi-omics analysis reveals WEE1 as a synergistic lethal target with hyperthermia through CDK1 super-activation. Nat Commun. 2024. https://doi.org/10.1038/s41467-024-46358-w.

Article  PubMed  PubMed Central  Google Scholar 

Zhu X, Su Q, Xie H, Song L, Yang F, Zhang D, Wang B, Lin S, Huang J, Wu M, et al. SIRT1 deacetylates WEE1 and sensitizes cancer cells to WEE1 inhibition. Nat Chem Biol. 2023;19(5):585–95.

Article  CAS  PubMed  Google Scholar 

Matheson CJ, Venkataraman S, Amani V, Harris PS, Backos DS, Donson AM, Wempe MF, Foreman NK, Vibhakar R, Reigan P. A WEE1 inhibitor analog of AZD1775 maintains synergy with cisplatin and demonstrates reduced single-agent cytotoxicity in medulloblastoma cells. ACS Chem Biol. 2016;11(7):2066–7.

Article  CAS  PubMed  Google Scholar 

Leijen SBJ, Schellens JH. Abrogation of the G2 checkpoint by inhibition of Wee-1 kinase results in sensitization of p53-deficient tumor cells to DNA-damaging agents. Curr Clin Pharmaco. 2010;5:186–91.

Article  CAS  Google Scholar 

Santo L, Siu KT, Raje N. Targeting cyclin-dependent kinases and cell cycle progression in human cancers. Semin Oncol. 2015;42(6):788–800.

Article  CAS  PubMed  Google Scholar 

Benada J, Macurek L. Targeting the checkpoint to kill cancer cells. Biomolecules. 2015;5(3):1912–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Witt Hamer PC, Mir SE, Noske D, Van Noorden CJF, Würdinger T. WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res. 2011;17(13):4200–7.

Article  PubMed  Google Scholar 

Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA, Molkentine JM, Mason KA, Meyn RE. MK-1775, a Novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res. 2011;17(17):5638–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.

Article  Google Scholar 

Heist RS, Sequist LV, Engelman JA. Genetic changes in squamous cell lung cancer: a review. J Thorac Oncol. 2012;7(5):924–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lan H, Tan M, Zhang Q, Yang F, Wang S, Li H, Xiong X, Sun Y. LSD1 destabilizes FBXW7 and abrogates FBXW7 functions independent of its demethylase activity. Proc Natl Acad Sci. 2019;116(25):12311–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lafay-Cousin L, Purdy E, Huang A, Cushing SL, Papaioannou V, Nettel-Aguirre A, Bouffet E. Early cisplatin induced ototoxicity profile may predict the need for hearing support in children with medulloblastoma. Pediatr Blood Cancer. 2012;60(2):287–92.

Article  PubMed  Google Scholar 

Mir SE, De Witt Hamer PC, Krawczyk PM, Balaj L, Claes A, Niers JM, Van Tilborg AAG, Zwinderman AH, Geerts D, Kaspers GJL, et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell. 2010;18(3):244–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashimoto O, Shinkawa M, Torimura T, Nakamura T, Selvendiran K, Sakamoto M, Koga H, Ueno T, Sata M. Cell cycle regulation by the Wee1 Inhibitor PD0166285, Pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line. BMC Cancer. 2006. https://doi.org/10.1186/1471-2407-6-292.

Article  PubMed  PubMed Central  Google Scholar 

Hashimoto O, Ueno T, Kimura R, Ohtsubo M, Nakamura T, Koga H, Torimura T, Uchida S, Yamashita K, Sata M. Inhibition of proteasome-dependent degradation of Wee1 in G2-arrested Hep3B cells by TGFβ1. Mol Carcinog. 2003;36(4):171–82.

Article  CAS  PubMed  Google Scholar 

Matheson CJ, Backos DS, Reigan P. Targeting WEE1 kinase in cancer. Trends Pharmacol Sci. 2016;37(10):872–81.

Article  CAS  PubMed  Google Scholar 

Yan J, Zhuang L, Wang Y, Jiang Y, Tu Z, Dong C, Zhu Y. Inhibitors of cell cycle checkpoint target Wee1 kinase—a patent review (2003–2022). Expert Opin Ther Pat. 2023;32(12):1217–44.

Article  Google Scholar 

Kong A, Mehanna H. WEE1 Inhibitor: clinical development. Curr Oncol Reports. 2021. https://doi.org/10.1007/s11912-021-01098-8.

Article  Google Scholar 

PosthumaDeBoer J, Würdinger T, Graat HCA, van Beusechem VW, Helder MN, van Royen BJ, Kaspers GJL. WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer. 2011. https://doi.org/10.1186/1471-2407-11-156.

Article  PubMed  PubMed Central  Google Scholar 

Lee Y-Y, Cho Y-J, Shin S-W, Choi C, Ryu J-Y, Jeon H-K, Choi J-J, Hwang JR, Choi CH, Kim T-J, et al. Anti-tumor effects of Wee1 kinase inhibitor with radiotherapy in human cervical

留言 (0)

沒有登入
gif