Ma XWR. Polymeric nanomedicines for poorly soluble drugs in oral delivery systems: an update. Int J Pharm Investig. 2018;48:61–75.
Chen G, Kang W, Li W, Chen S, Gao Y. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies. Theranostics. 2022;12(3):1419–39.
Article PubMed PubMed Central Google Scholar
Nguyen TXHL, Gauthier M, Yang G, Wang Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond). 2016;11:1169–85.
Article CAS PubMed Google Scholar
Shi GGW, Stephenson SM, Lee RJ. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations. J Control Release. 2002;80:309–19.
Article CAS PubMed Google Scholar
Lai SKWY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61:158–71.
Article CAS PubMed Google Scholar
Ensign LMSC, Suk JS, Cone R, Hanes J. Mucus penetrating panoparticles: biophysical tool and method of drug and gene delivery. AdvMater. 2012;24:3887–94.
Yang MLS, Wang YY, Zhong W, Happe C, Zhang M, Fu J, Hanes J. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew Chem, Int Ed. 2011;50:2597–600.
Verma ASF. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21.
Article CAS PubMed Google Scholar
Bennett CFCM, Chan H, Shoemaker JE, Mirabelli CK. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharm. 1992;41:1023–33.
Sahoo SKPJ, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82:105–14.
Article CAS PubMed Google Scholar
Boegh MNH. Mucus as a barrier to drug delivery - understanding and mimicking the barrier properties. Basic Clin Pharmacol Toxicol. 2015;116:179–86.
Article CAS PubMed Google Scholar
Ra C. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61:75–85.
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.
Article CAS PubMed Google Scholar
Shan W, Zhu X, Tao W, Cui Y, Liu M, Wu L, et al. Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers. ACS Appl Mater Interfaces. 2016;8(38):25444–53.
Article CAS PubMed Google Scholar
Zhang X, Cheng H, Dong W, Zhang M, Liu Q, Wang X, et al. Design and intestinal mucus penetration mechanism of core-shell nanocomplex. J Control Release. 2018;272:29–38.
Article CAS PubMed Google Scholar
Brunner JRS, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev. 2021;171:266–88.
Article CAS PubMed Google Scholar
Odenwald MATJ. The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol. 2017;14:9–21.
Article CAS PubMed Google Scholar
Prado HJMM. Cationization of polysaccharides: A path to greener derivatives with many industrial applications. Eur Polymer J. 2014;52:53–75.
Anselmo ACGY, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18:19–40.
Article CAS PubMed Google Scholar
Fan WXD, Zhu Q, Hu L, Gan Y. Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov Today. 2016;21:856–63.
Article CAS PubMed Google Scholar
Han XZE, Shi Y, Song B, Du H, Cao Z. Biomaterial-tight junction interaction and potential impacts. J Mater Chem B. 2019;7:6310–20.
Article CAS PubMed PubMed Central Google Scholar
Gopalakrishnan SPN, Tamiz AP, Vere J, Carrasco R, Somerville R, Tripathi A, Ginski M, Paterson BM, Alkan SS. Mechanism of action of ZOT-derived peptide AT-1002, a tight junction regulator and absorption enhancer. Int J Pharm. 2009;365:121–30.
Article CAS PubMed Google Scholar
Li MOE, Kitchens KM, Vere J, Alkan SS, Tamiz AP. Structure-activity relationship studies of permeability modulating peptide AT-1002. Bioorg Med Chem Lett. 2008;18:4584–6.
Article CAS PubMed Google Scholar
Wang JYV, Smart AL, Tajiri AW. Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm. 2015;12:966–73.
Article CAS PubMed Google Scholar
Wang XSZ, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials. 2021;275:120913.
Article CAS PubMed Google Scholar
Miles AJJR, Wallace BA. Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chem Soc Rev. 2021;50:8400–13.
Article CAS PubMed PubMed Central Google Scholar
Shahzadi I, Dizdarevic A, Efiana NA, Matuszczak B, Bernkop-Schnurch A. Trypsin decorated self-emulsifying drug delivery systems (SEDDS): Key to enhanced mucus permeation. J Colloid Interface Sci. 2018;531:253–60.
Article CAS PubMed Google Scholar
Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology. 2021;19(1):32.
Article CAS PubMed PubMed Central Google Scholar
Kararli T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–80.
Article CAS PubMed Google Scholar
Wang A, Yang T, Fan W, Yang Y, Zhu Q, Guo S, et al. Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Adv Healthc Mater. 2018;8(12).
Ding R, Zhao Z, He J, Tao Y, Zhang H, Yuan R, et al. Preparation, drug distribution, and in vivo evaluation of the safety of protein corona liposomes for liraglutide delivery. Nanomaterials (Basel). 2023;13(3):540.
Article CAS PubMed Google Scholar
Szmola R, Kukor Z, Sahin-Toth M. Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors. J Biol Chem. 2003;278(49):48580–9.
Article CAS PubMed Google Scholar
Uchida T, Kanazawa T, Takashima Y, Okada H. Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002. Chem Pharm Bull. 2011;59:196–201.
留言 (0)