Employing Raman Spectroscopy and Machine Learning for the Identification of Breast Cancer

Siegel RL, et al. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17–48.

Article  PubMed  Google Scholar 

Huynh PT, Jarolimek AM, Daye S. The false-negative mammogram. Radiographics. 1998;18(5):1137–54.

Article  CAS  PubMed  Google Scholar 

Hanna K, et al. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer. 2022;126(8):1125–39.

Article  PubMed  Google Scholar 

Haka AS, et al. Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci. 2005;102(35):12371–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.

Article  CAS  PubMed  Google Scholar 

Ganesan K, et al. Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng. 2012;6:77–98.

Article  PubMed  Google Scholar 

Menezes GL, et al. Magnetic resonance imaging in breast cancer: a literature review and future perspectives. World J Clin Oncol. 2014;5(2):61.

Article  PubMed  PubMed Central  Google Scholar 

Guo R, et al. Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol. 2018;44(1):37–70.

Article  PubMed  Google Scholar 

Li Z, et al. Detection of pancreatic cancer by indocyanine green-assisted fluorescence imaging in the first and second near‐infrared windows. Cancer Commun. 2021;41(12):1431.

Article  Google Scholar 

Xu J, et al. New horizons in intraoperative diagnostics of cancer in image and spectroscopy guided pancreatic cancer surgery. New Horizons Clin Case Rep. 2017;1:2.

Google Scholar 

Veys I, et al. ICG fluorescence imaging as a new tool for optimization of pathological evaluation in breast cancer tumors after neoadjuvant chemotherapy. PLoS ONE. 2018;13(5):e0197857.

Article  PubMed  PubMed Central  Google Scholar 

Sugie T, et al. Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: a meta-analysis. Int J Clin Oncol. 2017;22:11–7.

Article  CAS  PubMed  Google Scholar 

Kitai T, et al. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12(3):211–5.

Article  PubMed  Google Scholar 

Murawa D, et al. Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. J Br Surg. 2009;96(11):1289–94.

Article  CAS  Google Scholar 

Robson A-L, et al. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front Pharmacol. 2018;9:80.

Article  PubMed  PubMed Central  Google Scholar 

Zhang RR, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Reviews Clin Oncol. 2017;14(6):347–64.

Article  CAS  Google Scholar 

Orosco RK, Tsien RY, Nguyen QT. Fluorescence imaging in surgery. IEEE Rev Biomed Eng. 2013;6:178–87.

Article  PubMed  PubMed Central  Google Scholar 

Lassailly F, Griessinger E, Bonnet D. Microenvironmental contaminations induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood J Am Soc Hematol. 2010;115(26):5347–54.

CAS  Google Scholar 

Auner GW, et al. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018;37:691–717.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, et al. Raman spectroscopy and machine learning for the classification of breast cancers. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;264:120300.

Article  CAS  Google Scholar 

Hanlon E, et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol. 2000;45(2):R1.

Article  CAS  PubMed  Google Scholar 

Redd DC, et al. Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis. Appl Spectrosc. 1993;47(6):787–91.

Article  CAS  Google Scholar 

Frank CJ, McCreery RL, Redd DC. Raman spectroscopy of normal and diseased human breast tissues. Anal Chem. 1995;67(5):777–83.

Article  CAS  PubMed  Google Scholar 

Bitar RA, et al. Biochemical analysis of human breast tissues xpp qa? Using Fourier-transform Raman spectroscopy. J Biomed Opt. 2006;11(5):054001–054001.

Article  PubMed  Google Scholar 

Haka AS, et al. Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy. Cancer Res. 2002;62(18):5375–80.

CAS  PubMed  Google Scholar 

Kim KG. Book review: deep learning. Healthc Inf Res. 2016;22(4):351.

Article  Google Scholar 

Ozer ME, Sarica PO, Arga KY. New machine learning applications to accelerate personalized medicine in breast cancer: rise of the support vector machines. OMICS. 2020;24(5):241–6.

Article  CAS  PubMed  Google Scholar 

Kneipp J, et al. Characterization of breast duct epithelia: a Raman spectroscopic study. Vib Spectrosc. 2003;32(1):67–74.

Article  CAS  Google Scholar 

Wu T, et al. A pathways-based prediction model for classifying breast cancer subtypes. Oncotarget. 2017;8(35):58809.

Article  PubMed  PubMed Central  Google Scholar 

Kast RE, et al. Raman spectroscopy can differentiate malignant tumors from normal breast tissue and detect early neoplastic changes in a mouse model. Volume 89. Biopolymers: Original Research on Biomolecules; 2008. pp. 235–41. 3.

Google Scholar 

Fuentes AM, et al. Raman spectroscopy and convolutional neural networks for monitoring biochemical radiation response in breast tumour xenografts. Sci Rep. 2023;13(1):1530.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang L, et al. Polarized micro-raman spectroscopy and 2D Convolutional Neural Network Applied To Structural Analysis and discrimination of breast Cancer. Biosensors. 2022;13(1):65.

Article  PubMed  PubMed Central  Google Scholar 

Kourou K, et al. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.

Article  CAS  PubMed  Google Scholar 

Li Z, et al. Indocyanine green–assisted dental imaging in the first and second near-infrared windows as compared with X‐ray imaging. Volume 1448. Annals of the New York Academy of Sciences; 2019. pp. 42–51. 1.

Li Z, et al. Machine-learning-assisted spontaneous Raman spectroscopy classification and feature extraction for the diagnosis of human laryngeal cancer. Comput Biol Med. 2022;146:105617.

Article  CAS  PubMed  Google Scholar 

Li Z, et al. Detection of pancreatic cancer by convolutional-neural-network-assisted spontaneous Raman spectroscopy with critical feature visualization. Neural Netw. 2021;144:455–64.

Article  PubMed  Google Scholar 

Mazet V, et al. Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometr Intell Lab Syst. 2005;76(2):121–33.

留言 (0)

沒有登入
gif