Fullerene on non-iron cluster-matrix co-catalysts promotes collaborative H2 and N2 activation for ammonia synthesis

Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

Article  CAS  Google Scholar 

Kandemir, T. et al. The Haber–Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 52, 12723–12726 (2013).

Article  CAS  Google Scholar 

Martirez, J. M. P. & Carter, E. A. Prediction of a low-temperature N2 dissociation catalyst exploiting near–IR–to–visible light nanoplasmonics. Sci. Adv. 3, eaao4710 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Chang, F. et al. Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nat. Catal. 5, 222–230 (2022).

Article  CAS  Google Scholar 

Tang, Y. et al. Metal-dependent support effects of oxyhydride-supported Ru, Fe, Co catalysts for ammonia synthesis. Adv. Energy Mater. 8, 1801772 (2018).

Article  Google Scholar 

Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

Article  CAS  PubMed  Google Scholar 

Wang, Q. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 4, 959–967 (2021).

Article  CAS  Google Scholar 

Wang, T. et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 12, 3522–3529 (2019).

Article  CAS  Google Scholar 

Sato, K. et al. Barium oxide encapsulating cobalt nanoparticles supported on magnesium oxide: active non-noble metal catalysts for ammonia synthesis under mild reaction conditions. ACS Catal. 11, 13050–13061 (2021).

Article  CAS  Google Scholar 

Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

Article  CAS  PubMed  Google Scholar 

Peng, W. et al. Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10, 2001364 (2020).

Article  CAS  Google Scholar 

Kammert, J. et al. Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst. J. Am. Chem. Soc. 142, 7655–7667 (2020).

Article  CAS  PubMed  Google Scholar 

Baik, Y. et al. Splitting of hydrogen atoms into proton–electron pairs at BaO–Ru interfaces for promoting ammonia synthesis under mild conditions. J. Am. Chem. Soc. 145, 11364–11374 (2023).

Article  CAS  PubMed  Google Scholar 

Zheng, J. et al. Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angew. Chem. Int. Ed. 58, 17335–17341 (2019).

Article  CAS  Google Scholar 

Han, G.-F. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 16, 325–330 (2021).

Article  CAS  PubMed  Google Scholar 

Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

Article  Google Scholar 

Mao, C. et al. Hydrogen spillover to oxygen vacancy of TiO2–xHy/Fe: breaking the scaling relationship of ammonia synthesis. J. Am. Chem. Soc. 142, 17403–17412 (2020).

Article  CAS  PubMed  Google Scholar 

Ye, T.-N. et al. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 142, 14374–14383 (2020).

Article  CAS  PubMed  Google Scholar 

Zhang, K. et al. Spin-mediated promotion of Co catalysts for ammonia synthesis. Science 383, 1357–1363 (2024).

Article  CAS  PubMed  Google Scholar 

Zheng, J. et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2. Science 376, 288–292 (2022).

Article  CAS  PubMed  Google Scholar 

Fischer, J. E. et al. Compressibility of solid C60. Science 252, 1288–1290 (1991).

Article  CAS  PubMed  Google Scholar 

Wu, S. et al. Removal of hydrogen poisoning by electrostatically polar MgO support for low-pressure NH3 synthesis at a high rate over the Ru catalyst. ACS Catal. 10, 5614–5622 (2020).

Article  CAS  Google Scholar 

Hattori, M., Okuyama, N., Kurosawa, H. & Hara, M. Low-temperature ammonia synthesis on iron catalyst with an electron donor. J. Am. Chem. Soc. 145, 7888–7897 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

Article  CAS  PubMed  Google Scholar 

Zhou, Y. et al. Essential role of Ru–anion interaction in Ru-based ammonia synthesis catalysts. ACS Catal. 12, 7633–7642 (2022).

Article  CAS  Google Scholar 

Ojeda, M. et al. Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas: effect of manganese loading. Appl. Catal. A Gen. 261, 47–55 (2004).

Article  CAS  Google Scholar 

Aika, K.-i Role of alkali promoter in ammonia synthesis over ruthenium catalysts—effect on reaction mechanism. Catal. Today 286, 14–20 (2017).

Article  CAS  Google Scholar 

Sham, T. K. et al. Ru L‐edge X‐ray absorption studies of the formation of Ru–Cu bimetallic aggregates on Cu(100). J. Chem. Phys. 95, 8725–8731 (1991).

Article  CAS  Google Scholar 

Deng, S. et al. Synergistic doping and intercalation: realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 16289–16296 (2019).

Article  CAS  Google Scholar 

Lu, Y. et al. Water durable electride Y5Si3: electronic structure and catalytic activity for ammonia synthesis. J. Am. Chem. Soc. 138, 3970–3973 (2016).

Article  CAS  PubMed  Google Scholar 

Li, L. et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: from nanoparticles to subnanometric clusters and atomic clusters. Chem 8, 749–768 (2022).

Article  CAS  Google Scholar 

Zhou, S. et al. Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. J. Am. Chem. Soc. 142, 308–317 (2020).

Article  CAS  PubMed  Google Scholar 

Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

Article  CAS  PubMed  Google Scholar 

Yao, Y. et al. A Spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces. Angew. Chem. Int. Ed. 59, 10479–10483 (2020).

Article  CAS  Google Scholar 

Bian, X. et al. Quantifying the contribution of hot electrons in photothermal catalysis: a case study of ammonia synthesis over carbon-supported Ru catalyst. Angew. Chem. Int. Ed. 62, e202304452 (2023).

Article  CAS 

留言 (0)

沒有登入
gif