A novel molecular classification based on efferocytosis-related genes for predicting clinical outcome and treatment response in acute myeloid leukemia

Newell L, Cook R. Advances in acute myeloid leukemia. BMJ (Clinical research ed.) 375, n2026, https://doi.org/10.1136/bmj.n2026 (2021).

Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:502–26. https://doi.org/10.1002/ajh.26822.

Article  PubMed  Google Scholar 

DiNardo CD, Perl AE. Advances in patient care through increasingly individualized therapy. Nat Rev Clin Oncol. 2019;16:73–4. https://doi.org/10.1038/s41571-018-0156-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kantarjian H, et al. Acute myeloid leukemia: current progress and future directions. Blood cancer J. 2021;11. https://doi.org/10.1038/s41408-021-00425-3.

Lindsley RC, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76. https://doi.org/10.1182/blood-2014-11-610543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, Calianese D, Birge RB. Efferocytosis of dying cells differentially modulate immunological outcomes in tumor microenvironment. Immunol Rev. 2017;280:149–64. https://doi.org/10.1111/imr.12587.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Werfel TA, Cook RS. Efferocytosis in the tumor microenvironment. Semin Immunopathol. 2018;40:545–54. https://doi.org/10.1007/s00281-018-0698-5.

Article  PubMed  PubMed Central  Google Scholar 

Sachet M, Liang YY, Oehler R. The immune response to secondary necrotic cells. Apoptosis: Int J Program cell Death. 2017;22:1189–204. https://doi.org/10.1007/s10495-017-1413-z.

Article  CAS  Google Scholar 

Gardai SJ, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123:321–34. https://doi.org/10.1016/j.cell.2005.08.032.

Article  CAS  PubMed  Google Scholar 

Vandivier RW, Henson PM, Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest. 2006;129:1673–82. https://doi.org/10.1378/chest.129.6.1673.

Article  PubMed  Google Scholar 

Kojima Y, Weissman IL, Leeper NJ. The role of efferocytosis in atherosclerosis. Circulation. 2017;135:476–89. https://doi.org/10.1161/circulationaha.116.025684.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Yao Y, Deng Y, Shao A. Regulation of efferocytosis as a novel cancer therapy. Cell Communication Signaling: CCS. 2020;18:71. https://doi.org/10.1186/s12964-020-00542-9.

Article  PubMed  PubMed Central  Google Scholar 

Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65. https://doi.org/10.1002/path.1027.

Article  CAS  PubMed  Google Scholar 

Kurahara H et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. The Journal of surgical research 167, e211-219, https://doi.org/10.1016/j.jss.2009.05.026 (2011).

Voll RE, et al. Immunosuppressive effects of apoptotic cells. Nature. 1997;390:350–1. https://doi.org/10.1038/37022.

Article  CAS  PubMed  Google Scholar 

Joseph M, Enting D. Immune responses in bladder Cancer-role of Immune Cell populations, prognostic factors and therapeutic implications. Front Oncol. 2019;9:1270. https://doi.org/10.3389/fonc.2019.01270.

Article  PubMed  PubMed Central  Google Scholar 

Birge RB, et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23:962–78. https://doi.org/10.1038/cdd.2016.11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz Cruz J, et al. Inhibiting efferocytosis reverses macrophage-mediated immunosuppression in the leukemia microenvironment. Front Immunol. 2023;14. https://doi.org/10.3389/fimmu.2023.1146721.

Wilkerson M, Hayes D. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinf (Oxford England). 2010;26:1572–3. https://doi.org/10.1093/bioinformatics/btq170.

Article  CAS  Google Scholar 

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7. https://doi.org/10.1089/omi.2011.0118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newman A, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7. https://doi.org/10.1038/nmeth.3337.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geeleher P, Cox N, Huang R. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS ONE. 2014;9:e107468. https://doi.org/10.1371/journal.pone.0107468.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li SQ, et al. Transcriptome profiling reveals the high incidence of hnRNPA1 exon 8 inclusion in chronic myeloid leukemia. J Adv Res. 2020;24:301–10. https://doi.org/10.1016/j.jare.2020.04.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee-Sherick AB, et al. Aberrant mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene. 2013;32:5359–68. https://doi.org/10.1038/onc.2013.40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev. 2016;99:180–5. https://doi.org/10.1016/j.addr.2015.11.009.

Article  CAS  PubMed  Google Scholar 

Zhang L, Gajewski TF, Kline J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood. 2009;114:1545–52. https://doi.org/10.1182/blood-2009-03-206672.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davids MS, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375:143–53. https://doi.org/10.1056/NEJMoa1601202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daver N, et al. Efficacy, Safety, and biomarkers of response to Azacitidine and Nivolumab in Relapsed/Refractory Acute myeloid leukemia: a nonrandomized, Open-Label, phase II study. Cancer Discov. 2019;9:370–83. https://doi.org/10.1158/2159-8290.Cd-18-0774.

Article  CAS  PubMed  Google Scholar 

Abbas HA, et al. Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nat Commun. 2021;12:6071. https://doi.org/10.1038/s41467-021-26282-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milella M, et al. Beyond single pathway inhibition: MEK inhibitors as a platform for the development of pharmacological combinations with synergistic anti-leukemic effects. Curr Pharm Design. 2005;11:2779–95. https://doi.org/10.2174/1381612054546842.

Article  CAS  Google Scholar 

Milella M, et al. MEK blockade converts AML differentiating response to retinoids into extensive apoptosis. Blood. 2007;109:2121–9.

留言 (0)

沒有登入
gif