Ginsenoside Rg1 ameliorates stress-exacerbated Parkinson’s disease in mice by eliminating RTP801 and α-synuclein autophagic degradation obstacle

Przedborski S. The two-century journey of Parkinson disease research. Nat Rev Neurosci. 2017;18:251–9.

Article  PubMed  CAS  Google Scholar 

Emamzadeh FN, Surguchov A. Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci. 2018;12:612.

Article  PubMed  PubMed Central  Google Scholar 

Lang AE, Siderowf AD, Macklin EA, Poewe W, Brooks DJ, Fernandez HH, et al. Trial of cinpanemab in early Parkinson’s disease. N Engl J Med. 2022;387:408–20.

Article  PubMed  CAS  Google Scholar 

Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek K, et al. Trial of prasinezumab in early-stage Parkinson’s disease. N Engl J Med. 2022;387:421–32.

Article  PubMed  CAS  Google Scholar 

Zou K, Guo W, Tang G, Zheng B, Zheng Z. A case of early onset Parkinson’s disease after major stress. Neuropsychiatr Dis Treat. 2013;9:1067–9.

PubMed  PubMed Central  Google Scholar 

Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19:170–8.

Article  PubMed  CAS  Google Scholar 

Chen YP, Yu SH, Zhang GH, Hou YB, Gu XJ, Ou RW, et al. The mutation spectrum of Parkinson-disease-related genes in early-onset Parkinson’s disease in ethnic Chinese. Eur J Neurol. 2022;29:3218–28.

Article  PubMed  Google Scholar 

van der Heide A, Meinders MJ, Bloem BR, Helmich RC. The impact of the COVID-19 pandemic on psychological distress, physical activity, and symptom severity in Parkinson’s disease. J Parkinsons Dis. 2020;10:1355–64.

Article  PubMed  PubMed Central  Google Scholar 

Helmich RC, Bloem BR. The impact of the COVID-19 pandemic on Parkinson’s disease: hidden sorrows and emerging opportunities. J Parkinsons Dis. 2020;10:351–4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Edwards E, Carroll C. In reply to: Helmich and Bloem (2020) “The impact of the COVID-19 pandemic on Parkinson’s disease: hidden sorrows and emerging opportunities”. J Parkinsons Dis. 2020;10:1267–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang Z, Chu SF, Wang SS, Jiang YN, Gao Y, Yang PF, et al. RTP801 is a critical factor in the neurodegeneration process of A53T alpha-synuclein in a mouse model of Parkinson’s disease under chronic restraint stress. Br J Pharmacol. 2018;175:590–605.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin XM, Pan MH, Sun J, Wang M, Huang ZH, Wang G, et al. Membrane phospholipid peroxidation promotes loss of dopaminergic neurons in psychological stress-induced Parkinson’s disease susceptibility. Aging Cell. 2023;22:e13970.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baida G, Bhalla P, Kirsanov K, Lesovaya E, Yakubovskaya M, Yuen K, et al. REDD1 functions at the crossroads between the therapeutic and adverse effects of topical glucocorticoids. EMBO Mol Med. 2015;7:42–58.

Article  PubMed  CAS  Google Scholar 

Malagelada C, Jin ZH, Greene LA. RTP801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci. 2008;28:14363–71.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Emmanouilidou E, Elenis D, Papasilekas T, Stranjalis G, Gerozissis K, Ioannou PC, et al. Assessment of alpha-synuclein secretion in mouse and human brain parenchyma. PLoS One. 2011;6:e22225.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jang A, Lee HJ, Suk JE, Jung JW, Kim KP, Lee SJ. Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem. 2010;113:1263–74.

Article  PubMed  CAS  Google Scholar 

Yamada K, Iwatsubo T. Extracellular alpha-synuclein levels are regulated by neuronal activity. Mol Neurodegener. 2018;13:9.

Article  PubMed  PubMed Central  Google Scholar 

Molitoris JK, McColl KS, Swerdlow S, Matsuyama M, Lam M, Finkel TH, et al. Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J Biol Chem. 2011;286:30181–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: from bench to bedside. Acta Pharmacol Sin. 2023;44:913–30.

Article  PubMed  CAS  Google Scholar 

Zhang Z, Song Z, Shen F, Xie P, Wang J, Zhu AS, et al. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-alpha in the hippocampus. Mol Neurobiol. 2021;58:1550–63.

Article  PubMed  CAS  Google Scholar 

Li J, Gao W, Zhao Z, Li Y, Yang L, Wei W, et al. Ginsenoside Rg1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis. Mol Neurobiol. 2022;59:2855–73.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang QS, Heng Y, Chen Y, Luo P, Wen L, Zhang Z, et al. A novel bibenzyl compound (20C) protects mice from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid toxicity by regulating the alpha-synuclein-related inflammatory response. J Pharmacol Exp Ther. 2017;363:284–92.

Article  CAS  Google Scholar 

Lyu D, Wang F, Zhang M, Yang W, Huang H, Huang Q, et al. Ketamine induces rapid antidepressant effects via the autophagy-NLRP3 inflammasome pathway. Psychopharmacology. 2022;239:3201–12.

Article  PubMed  CAS  Google Scholar 

Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics. 2016;14:339–51.

Article  PubMed  Google Scholar 

Barriere DA, Ella A, Szeremeta F, Adriaensen H, Meme W, Chaillou E, et al. Brain orchestration of pregnancy and maternal behavior in mice: a longitudinal morphometric study. Neuroimage. 2021;230:117776.

Article  PubMed  Google Scholar 

Deng S, Franklin CG, O’Boyle M, Zhang W, Heyl BL, Jerabek PA, et al. Hemodynamic and metabolic correspondence of resting-state voxel-based physiological metrics in healthy adults. Neuroimage. 2022;250:118923.

Article  PubMed  CAS  Google Scholar 

Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci. 2015;9:386.

PubMed  PubMed Central  CAS  Google Scholar 

Yang X, Williams JK, Yan R, Mouradian MM, Baum J. Increased dynamics of alpha-synuclein fibrils by beta-synuclein leads to reduced seeding and cytotoxicity. Sci Rep. 2019;9:17579.

Article  PubMed  PubMed Central  Google Scholar 

Chen C, Chu SF, Ai QD, Zhang Z, Chen NH. CKLF1/CCR5 axis is involved in neutrophils migration of rats with transient cerebral ischemia. Int Immunopharmacol. 2020;85:106577.

Article  PubMed  CAS  Google Scholar 

Zhou X, Zhang YN, Li FF, Zhang Z, Cui LY, He HY, et al. Neuronal chemokine-like-factor 1 (CKLF1) up-regulation promotes M1 polarization of microglia in rat brain after stroke. Acta Pharmacol Sin. 2022;43:1217–30.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif