Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 2013;42(15):6223–35.
Jesionowski T, Zdarta J, Krajewska B. Enzyme immobilization by adsorption: a review. Adsorption. 2014;20:801–21.
Rios NS, Mendez-Sanchez C, Arana-Peña S, Rueda N, Ortiz C, Gonçalves LR, Fernandez-Lafuente R. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. Biochim Biophys Acta Proteins Proteom. 2019;1867(9):741–7.
Spasojevic M, Prodanovic O, Pantic N, Popovic N, Balaz AM, Prodanovic R. The enzyme immobilization: carriers and immobilization methods. Journal of Engineering & Processing Management. 2019;11(2):89–105.
Almulaiky YQ, Khalil N, El-Shishtawy RM, Altalhi T, Algamal Y, Aldhahri M, Al-Harbi SA, Allehyani ES, Bilal M, Mohammed MM. Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability. Int J Biol Macromol. 2021;167:299–308.
Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5:951–67.
Tandon S, Sharma A, Singh S, Sharma S, Sarma SJ. Therapeutic enzymes: Discoveries, production and applications. Journal of Drug Delivery Science and Technology. 2021;63: 102455.
Nguyen HH, Kim M. An overview of techniques in enzyme immobilization. Applied Science and Convergence Technology. 2017;26(6):157–63.
Maghraby YR, El-Shabasy RM, Ibrahim AH. Azzazy HME-S: Enzyme immobilization technologies and industrial applications. ACS Omega. 2023;8(6):5184–96.
Rios NS, Morais EG, dos Santos GW, Andrade Neto DM, dos Santos JCS, Bohn F, Correa MA, Fechine PBA, Fernandez-Lafuente R, Gonçalves LRB. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int J Biol Macromol. 2019;141:313–24.
Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett. 2020;18(2):315–23.
de Oliveira UMF. Lima de Matos LJB, de Souza MCM, Pinheiro BB, dos Santos JCS, Gonçalves LRB: Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts’ Properties of Rhizomucor miehei Lipase onto Chitosan. Appl Biochem Biotechnol. 2018;184(4):1263–85.
de Menezes FL, Freire TM, de Castro Monteiro RR, Antunes RA, Melo RLF, Freire RM, dos Santos JCS, Fechine PBA. L-cysteine-coated magnetite nanoparticles as a platform for enzymes immobilization: Amplifying biocatalytic activity of Candida antarctica Lipase A. Mater Res Bull. 2024;177: 112882.
Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biological procedures online. 2016;18:1–11.
Khan MR. Immobilized enzymes: a comprehensive review. Bulletin of the National Research Centre. 2021;45(1):1–13.
Article MathSciNet Google Scholar
Riaz R, Ashraf M, Hussain N, Baqar Z, Bilal M, Iqbal HMN. Redesigning Robust Biocatalysts by Engineering Enzyme Microenvironment and Enzyme Immobilization. Catal Lett. 2023;153(6):1587–601.
Li W, Bilal M, Singh AK, Sher F, Ashraf SS, Franco M, Américo-Pinheiro JHP, Iqbal HMN. Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review. Catal Lett. 2023;153(5):1227–39.
Garcia-Galan C, dos Santos JCS, Barbosa O, Torres R, Pereira EB, Corberan VC, Gonçalves LRB, Fernandez-Lafuente R. Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochem. 2014;49(4):604–16.
Cui J, Ren S, Lin T, Feng Y, Jia S. Shielding effects of Fe3+-tannic acid nanocoatings for immobilized enzyme on magnetic Fe3O4@silica core shell nanosphere. Chem Eng J. 2018;343:629–37.
Cui J, Zhao Y, Liu R, Zhong C, Jia S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci Rep. 2016;6(1):27928.
Feng Y, Du Y, Kuang G, Zhong L, Hu H, Jia S, Cui J. Hierarchical micro- and mesoporous ZIF-8 with core–shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization. J Colloid Interface Sci. 2022;610:709–18.
Rueda N, dos Santos JCS, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chem Rec. 2016;16(3):1436–55.
Shen X, Du Y, Du Z, Tang X, Li P, Cheng J, Yan R, Cui J. Construction of enzyme@glutathione hybrid metal-organic frameworks: glutathione-boosted microenvironment fine-tuning of biomimetic immobilization for improving catalytic performance. Materials Today Chemistry. 2023;27: 101326.
Chen N, Chang B, Shi N, Yan W, Lu F, Liu F. Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Crit Rev Biotechnol. 2023;43(3):369–83.
Cui J, Cui L, Jia S, Su Z, Zhang S. Hybrid Cross-Linked Lipase Aggregates with Magnetic Nanoparticles: A Robust and Recyclable Biocatalysis for the Epoxidation of Oleic Acid. J Agric Food Chem. 2016;64(38):7179–87.
Thangaraj B, Solomon PR. Immobilization of lipases–a review. Part II: carrier materials ChemBioEng Reviews. 2019;6(5):167–94.
Chauhan V, Kaushal D, Dhiman VK, Kanwar SS, Singh D, Dhiman VK, Pandey H. An insight in developing carrier-free immobilized enzymes. Frontiers in Bioengineering and Biotechnology. 2022;10: 794411.
Xue P, Hu CM, Yan XH, Fang GL, Shen HF. Enhancement of activity and reusability of lipase immobilized on magnetic mesoporous silica for the resolution of racemic secondary alcohols. J Chin Chem Soc. 2019;66(4):427–33.
Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip. 2015;29(2):205–20.
Hwang ET, Lee B, Zhang M, Jun S-H, Shim J, Lee J, Kim J, Gu MB. Immobilization and stabilization of subtilisin Carlsberg in magnetically-separable mesoporous silica for transesterification in an organic solvent. Green Chem. 2012;14(7):1884–7.
Lee CH, Lee HS, Lee JW, Kim J, Lee JH, Jin ES, Hwang ET. Evaluating enzyme stabilizations in calcium carbonate: Comparing in situ and crosslinking mediated immobilization. Int J Biol Macromol. 2021;175:341–50.
Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 2011;353(16):2885–904.
Liu D-M, Dong C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 2020;92:464–75.
Zucca P, Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules. 2014;19(9):14139–94.
Zhang M, Jun S-H, Wee Y, Kim HS, Hwang ET, Shim J, Hwang SY, Lee J, Kim J. Activation of crosslinked lipases in mesoporous silica via lid opening for recyclable biodiesel production. Int J Biol Macromol. 2022;222:2368–74.
Ashkan Z, Hemmati R, Homaei A, Dinari A, Jamlidoost M, Tashakor A. Immobilization of enzymes on nanoinorganic support materials: An update. Int J Biol Macromol. 2021;168:708–21.
Villeneuve P, Muderhwa JM, Graille J, Haas MJ. Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B Enzym. 2000;9(4–6):113–48.
Liu S, Bilal M, Rizwan K, Gul I, Rasheed T, Iqbal HM. Smart chemistry of enzyme immobilization using various support matrices–a review. Int J Biol Macromol. 2021;190:396–408.
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts. 2018;8(2):92.
Cavalcante FT, Cavalcante AL, de Sousa IG, Neto FS, dos Santos JC. Current status and future perspectives of supports and protocols for enzyme immobilization. Catalysts. 2021;11(10):1222.
Ismail AR, Baek K-H. Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects. Int J Biol Macromol. 2020;163:1624–39.
Mulinari J, Oliveira JV, Hotza D. Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol Adv. 2020;42: 107581.
Govardhan CP. Crosslinking of enzymes for improved stability and performance. Curr Opin Biotechnol. 1999;10(4):331–5.
Yang Y, Yu H, Zhou X, Zhou Z. Shallow porous microsphere carriers with core-shell structure based on glass beads cross-linking chitosan for immobilizing inulinase. Molecular Catalysis. 2020;486: 110871.
留言 (0)