Hyperactivation of crosslinked lipases in elastic hydroxyapatite microgel and their properties

Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 2013;42(15):6223–35.

Article  Google Scholar 

Jesionowski T, Zdarta J, Krajewska B. Enzyme immobilization by adsorption: a review. Adsorption. 2014;20:801–21.

Article  Google Scholar 

Rios NS, Mendez-Sanchez C, Arana-Peña S, Rueda N, Ortiz C, Gonçalves LR, Fernandez-Lafuente R. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. Biochim Biophys Acta Proteins Proteom. 2019;1867(9):741–7.

Article  Google Scholar 

Spasojevic M, Prodanovic O, Pantic N, Popovic N, Balaz AM, Prodanovic R. The enzyme immobilization: carriers and immobilization methods. Journal of Engineering & Processing Management. 2019;11(2):89–105.

Google Scholar 

Almulaiky YQ, Khalil N, El-Shishtawy RM, Altalhi T, Algamal Y, Aldhahri M, Al-Harbi SA, Allehyani ES, Bilal M, Mohammed MM. Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability. Int J Biol Macromol. 2021;167:299–308.

Article  Google Scholar 

Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5:951–67.

Tandon S, Sharma A, Singh S, Sharma S, Sarma SJ. Therapeutic enzymes: Discoveries, production and applications. Journal of Drug Delivery Science and Technology. 2021;63: 102455.

Article  Google Scholar 

Nguyen HH, Kim M. An overview of techniques in enzyme immobilization. Applied Science and Convergence Technology. 2017;26(6):157–63.

Article  Google Scholar 

Maghraby YR, El-Shabasy RM, Ibrahim AH. Azzazy HME-S: Enzyme immobilization technologies and industrial applications. ACS Omega. 2023;8(6):5184–96.

Article  Google Scholar 

Rios NS, Morais EG, dos Santos GW, Andrade Neto DM, dos Santos JCS, Bohn F, Correa MA, Fechine PBA, Fernandez-Lafuente R, Gonçalves LRB. Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int J Biol Macromol. 2019;141:313–24.

Article  Google Scholar 

Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M. Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett. 2020;18(2):315–23.

Article  Google Scholar 

de Oliveira UMF. Lima de Matos LJB, de Souza MCM, Pinheiro BB, dos Santos JCS, Gonçalves LRB: Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts’ Properties of Rhizomucor miehei Lipase onto Chitosan. Appl Biochem Biotechnol. 2018;184(4):1263–85.

Article  Google Scholar 

de Menezes FL, Freire TM, de Castro Monteiro RR, Antunes RA, Melo RLF, Freire RM, dos Santos JCS, Fechine PBA. L-cysteine-coated magnetite nanoparticles as a platform for enzymes immobilization: Amplifying biocatalytic activity of Candida antarctica Lipase A. Mater Res Bull. 2024;177: 112882.

Article  Google Scholar 

Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biological procedures online. 2016;18:1–11.

Article  Google Scholar 

Khan MR. Immobilized enzymes: a comprehensive review. Bulletin of the National Research Centre. 2021;45(1):1–13.

Article  MathSciNet  Google Scholar 

Riaz R, Ashraf M, Hussain N, Baqar Z, Bilal M, Iqbal HMN. Redesigning Robust Biocatalysts by Engineering Enzyme Microenvironment and Enzyme Immobilization. Catal Lett. 2023;153(6):1587–601.

Article  Google Scholar 

Li W, Bilal M, Singh AK, Sher F, Ashraf SS, Franco M, Américo-Pinheiro JHP, Iqbal HMN. Broadening the Scope of Biocatalysis Engineering by Tailoring Enzyme Microenvironment: A Review. Catal Lett. 2023;153(5):1227–39.

Article  Google Scholar 

Garcia-Galan C, dos Santos JCS, Barbosa O, Torres R, Pereira EB, Corberan VC, Gonçalves LRB, Fernandez-Lafuente R. Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochem. 2014;49(4):604–16.

Article  Google Scholar 

Cui J, Ren S, Lin T, Feng Y, Jia S. Shielding effects of Fe3+-tannic acid nanocoatings for immobilized enzyme on magnetic Fe3O4@silica core shell nanosphere. Chem Eng J. 2018;343:629–37.

Article  Google Scholar 

Cui J, Zhao Y, Liu R, Zhong C, Jia S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci Rep. 2016;6(1):27928.

Article  Google Scholar 

Feng Y, Du Y, Kuang G, Zhong L, Hu H, Jia S, Cui J. Hierarchical micro- and mesoporous ZIF-8 with core–shell superstructures using colloidal metal sulfates as soft templates for enzyme immobilization. J Colloid Interface Sci. 2022;610:709–18.

Article  Google Scholar 

Rueda N, dos Santos JCS, Ortiz C, Torres R, Barbosa O, Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chem Rec. 2016;16(3):1436–55.

Article  Google Scholar 

Shen X, Du Y, Du Z, Tang X, Li P, Cheng J, Yan R, Cui J. Construction of enzyme@glutathione hybrid metal-organic frameworks: glutathione-boosted microenvironment fine-tuning of biomimetic immobilization for improving catalytic performance. Materials Today Chemistry. 2023;27: 101326.

Article  Google Scholar 

Chen N, Chang B, Shi N, Yan W, Lu F, Liu F. Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Crit Rev Biotechnol. 2023;43(3):369–83.

Article  Google Scholar 

Cui J, Cui L, Jia S, Su Z, Zhang S. Hybrid Cross-Linked Lipase Aggregates with Magnetic Nanoparticles: A Robust and Recyclable Biocatalysis for the Epoxidation of Oleic Acid. J Agric Food Chem. 2016;64(38):7179–87.

Article  Google Scholar 

Thangaraj B, Solomon PR. Immobilization of lipases–a review. Part II: carrier materials ChemBioEng Reviews. 2019;6(5):167–94.

Google Scholar 

Chauhan V, Kaushal D, Dhiman VK, Kanwar SS, Singh D, Dhiman VK, Pandey H. An insight in developing carrier-free immobilized enzymes. Frontiers in Bioengineering and Biotechnology. 2022;10: 794411.

Article  Google Scholar 

Xue P, Hu CM, Yan XH, Fang GL, Shen HF. Enhancement of activity and reusability of lipase immobilized on magnetic mesoporous silica for the resolution of racemic secondary alcohols. J Chin Chem Soc. 2019;66(4):427–33.

Article  Google Scholar 

Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip. 2015;29(2):205–20.

Article  Google Scholar 

Hwang ET, Lee B, Zhang M, Jun S-H, Shim J, Lee J, Kim J, Gu MB. Immobilization and stabilization of subtilisin Carlsberg in magnetically-separable mesoporous silica for transesterification in an organic solvent. Green Chem. 2012;14(7):1884–7.

Article  Google Scholar 

Lee CH, Lee HS, Lee JW, Kim J, Lee JH, Jin ES, Hwang ET. Evaluating enzyme stabilizations in calcium carbonate: Comparing in situ and crosslinking mediated immobilization. Int J Biol Macromol. 2021;175:341–50.

Article  Google Scholar 

Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 2011;353(16):2885–904.

Article  Google Scholar 

Liu D-M, Dong C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 2020;92:464–75.

Article  Google Scholar 

Zucca P, Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules. 2014;19(9):14139–94.

Article  Google Scholar 

Zhang M, Jun S-H, Wee Y, Kim HS, Hwang ET, Shim J, Hwang SY, Lee J, Kim J. Activation of crosslinked lipases in mesoporous silica via lid opening for recyclable biodiesel production. Int J Biol Macromol. 2022;222:2368–74.

Article  Google Scholar 

Ashkan Z, Hemmati R, Homaei A, Dinari A, Jamlidoost M, Tashakor A. Immobilization of enzymes on nanoinorganic support materials: An update. Int J Biol Macromol. 2021;168:708–21.

Article  Google Scholar 

Villeneuve P, Muderhwa JM, Graille J, Haas MJ. Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B Enzym. 2000;9(4–6):113–48.

Article  Google Scholar 

Liu S, Bilal M, Rizwan K, Gul I, Rasheed T, Iqbal HM. Smart chemistry of enzyme immobilization using various support matrices–a review. Int J Biol Macromol. 2021;190:396–408.

Article  Google Scholar 

Zdarta J, Meyer AS, Jesionowski T, Pinelo M. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts. 2018;8(2):92.

Article  Google Scholar 

Cavalcante FT, Cavalcante AL, de Sousa IG, Neto FS, dos Santos JC. Current status and future perspectives of supports and protocols for enzyme immobilization. Catalysts. 2021;11(10):1222.

Article  Google Scholar 

Ismail AR, Baek K-H. Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects. Int J Biol Macromol. 2020;163:1624–39.

Article  Google Scholar 

Mulinari J, Oliveira JV, Hotza D. Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol Adv. 2020;42: 107581.

Article  Google Scholar 

Govardhan CP. Crosslinking of enzymes for improved stability and performance. Curr Opin Biotechnol. 1999;10(4):331–5.

Article  Google Scholar 

Yang Y, Yu H, Zhou X, Zhou Z. Shallow porous microsphere carriers with core-shell structure based on glass beads cross-linking chitosan for immobilizing inulinase. Molecular Catalysis. 2020;486: 110871.

留言 (0)

沒有登入
gif