Mejora de las funciones ejecutivas y las habilidades matemáticas a través del fitness/actividad física en niños de primaria: una revisión sistemática

Aadland, K. N., Aadland, E., Andersen, J. R., Lervåg, A., Moe, V. F., Resaland, G. K., & Ommundsen, Y. (2018). Executive function, behavioral self-regulation, and school related well-being did not mediate the effect of school-based physical activity on academic performance in numeracy in 10-year-old children. The Active Smarter Kids (ASK) study. Frontiers in Psychology, 9, 1–12. https://doi.org/10.3389/fpsyg.2018.00245

Aadland, K. N., Moe, V. F., Aadland, E., Anderssen, S. A., Resaland, G. K., & Ommundsen, Y. (2017a). Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Mental Health and Physical Activity, 12, 10–18. https://doi.org/10.1016/j.mhpa.2017.01.001

Aadland, K. N., Ommundsen, Y., Aadland, E., Brønnick, K. S., Lervåg, A., Resaland, G. K., & Moe, V. F. (2017b). Executive functions do not mediate prospective relations between indices of physical activity and academic performance: The Active Smarter Kids (ASK) study. Frontiers in Psychology, 8, 1–12. https://doi.org/10.3389/fpsyg.2017.01088

Beck, M. M., Lind, R. R., Geertsen, S. S., Ritz, C., Lundbye-Jensen, J., & Wienecke, J. (2016). Motor-enriched learning activities can improve mathematical performance in preadolescent children. Frontiers in Human Neuroscience, 10, 1–14. https://doi.org/10.3389/fnhum.2016.00645

Becker, D. R., McClelland, M. M., Geldhof, G. J., Gunter, K. B., & MacDonald, M. (2018). Open-Skilled Sport, Sport Intensity, Executive Function, and Academic Achievement in Grade School Children. Early Education and Development, 29(7), 1–17. https://doi.org/10.1080/10409289.2018.1479079

Berse, T., Rolfes, K., Barenberg, J., Dutke, S., Kuhlenbäumer, G., Völker, K., Winter, B., Wittig, M., & Knecht, S. (2015). Acute physical exercise improves shifting in adolescents at school: Evidence for a dopaminergic contribution. Frontiers in Behavioral Neuroscience, 9. 196. https://doi.org/10.3389/fnbeh.2015.00196

Best, J. R. (2010). Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise. Developmental Review, 30(4), 331–551. https://doi.org/10.1016/j.dr.2010.08.001

Bidzan-Bluma, I., & Lipowska, M. (2018). Physical Activity and Cognitive Functioning of Children: A Systematic Review. International journal of environmental research and public health, 15(4), 800. https://doi.org/10.3390/ijerph15040800

Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78(2), 647–663. https://doi.org/10.1111/j.1467-8624.2007.01019.x

Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–228. https://doi.org/10.1080/87565640801982312

Bull, R., & Lee, K. (2014). Executive Functioning and Mathematics Achievement. Child development perspectives, 8(1), 36-41. https://doi.org/10.1111/cdep.12059

Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 46(1), 3–18. https://doi.org/10.1111/j.1469-7610.2004.00374.x

Cantin, R. H., Gnaedinger, E. K., Gallaway, K. C., Hesson-McInnis, M. S., & Hund, A. M. (2016). Executive functioning predicts reading, mathematics, and theory of mind during the elementary years. Journal of Experimental Child Psychology, 146, 66–78. https://doi.org/10.1016/j.jecp.2016.01.014

Chaddock, L., Erickson, K. I., Prakash, R. S., Vanpatter, M., Voss, M. W., Pontifex, M. B., Raine, L. B., Hillman, C. H., & Kramer, A. F. (2010). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience, 32(3), 249–256. https://doi.org/10.1159/000316648

Chaddock, L., Pontifex, M. B., Hillman, C. H., & Kramer, A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. Journal of the International Neuropsychological Society, 17(6), 975-985. https://doi.org/10.1017/S1355617711000567

Chaddock-Heyman, L., Erickson, K. I., Kienzler, C., King, M., Pontifex, M. B., Raine, L. B., Hillman, C. H., & Kramer, A. F. (2015). The role of aerobic fitness in cortical thickness and mathematics achievement in preadolescent children. PLoS ONE, 10(8), 1–11. https://doi.org/10.1371/journal.pone.0134115

Chaddock-Heyman, L., Erickson, K., Voss, M., Knecht, A., Pontifex, M., Castelli, D., Hillman, C., & Kramer, A. (2013). The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Frontiers in Human Neuroscience, 7, 72. https://www.frontiersin.org/article/10.3389/fnhum.2013.00072

Chaddock-Heyman, L., Weng, T. B., Kienzler, C., Weisshappel, R., Drollette, E. S., Raine, L. B., Westfall, D. R., Kao, S. C., Baniqued, P., Castelli, D. M., Hillman, C. H., & Kramer, A. F. (2020). Brain Network Modularity Predicts Improvements in Cognitive and Scholastic Performance in Children Involved in a Physical Activity Intervention. Frontiers in Human Neuroscience, 14, 1–13. https://doi.org/10.3389/fnhum.2020.00346

Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. https://doi.org/10.1016/j.brainres.2012.02.068

Cook, D. A., & Reed, D. A. (2015). Appraising the Quality of Medical Education Research Methods. Academic Medicine, 90(8), 1067–1076. https://doi.org/10.1097/acm.0000000000000786

Daly-Smith, A. J., Zwolinsky, S., McKenna, J., Tomporowski, P. D., Defeyter, M. A., & Manley, A. (2018). Systematic review of acute physically active learning and classroom movement breaks on children's physical activity, cognition, academic performance and classroom behaviour: understanding critical design features. BMJ Open Sport & Exercise Medicine, 4(1), e000341. https://doi.org/10.1136/bmjsem-2018-000341

Davis, C. L., & Cooper, S. (2011). Fitness, fatness, cognition, behavior, and academic achievement among overweight children: Do cross-sectional associations correspond to exercise trial outcomes? Preventive Medicine, 52(SUPPL.), S65–S69. https://doi.org/10.1016/j.ypmed.2011.01.020

Davis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P. H., Yanasak, N. E., Allison, J. D., & Naglieri, J. A. (2011). Exercise Improves Executive Function and Achievement and Alters Brain Activation in Overweight Children: A Randomized, Controlled Trial. Health Psychology, 30(1), 91–98. https://doi.org/10.1037/a0021766

Dekker, S., Lee, N. C., Howard-Jones, P., & Jolles, J. (2012). Neuromyths in education: Prevalence and predictors of misconceptions among teachers. Frontiers in Psychology, 3, 429. https://doi.org/10.3389/fpsyg.2012.00429

Dencker, M., Thorsson, O., Karlsson, M. K., Lindén, C., Svensson, J., Wollmer, P., & Andersen, L. B. (2006). Daily physical activity and its relation to aerobic fitness in children aged 8–11 years. European Journal of Applied Physiology, 96(5), 587-592. https://doi.org/10.1007/s00421-005-0117-1

Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Medicine and science in sports and exercise, 48(6), 1197–1222. https://doi.org/10.1249/MSS.0000000000000901

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). School Readiness and Later Achievement. Developmental Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428

Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive Function in Preschoolers: A Review Using an Integrative Framework. Psychological Bulletin, 134(1), 31–60. https://doi.org/10.1037/0033-2909.134.1.31

Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177–190. https://doi.org/10.1037/0012-1649.40.2.177

Gerber, M., Lang, C., Beckmann, J., du Randt, R., Gall, S., Seelig, H., Long, K. Z., Ludyga, S., Müller, I., Nienaber, M., Nqweniso, S., Pühse, U., Steinmann, P., Utzinger, J., & Walter, C. (2021). How are academic achievement and inhibitory control associated with physical fitness, soil-transmitted helminth infections, food insecurity and stunting among South African primary schoolchildren? BMC public health, 21(1), 852. https://doi.org/10.1186/s12889-021-10779-9

Gradari, S., Pallé, A., McGreevy, K. R., Fontán-Lozano, Á., & Trejo, J. L. (2016). Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective. Frontiers in Neuroscience, 10, 93. https://doi.org/10.3389/fnins.2016.00093

Grieco, L. A., Jowers, E. M., & Bartholomew, J. B. (2009). Physically active academic lessons and time on task: the moderating effect of body mass index. Medicine and Science in Sports and Exercise, 41(10), 1921–1926. https://doi.org/10.1249/MSS.0b013e3181a61495

Haapala, E. A. (2013). Cardiorespiratory fitness and motor skills in relation to cognition and academic performance in children - A review. Journal of Human Kinetics, 36, 55. https://doi.org/10.2478/hukin-2013-0006

Have, M., Nielsen, J. H., Ernst, M. T., Gejl, A. K., Fredens, K., Grøntved, A., & Kristensen, P. L. (2018). Classroom-based physical activity improves children’s math achievement – A randomized controlled trial. PLoS ONE, 13(12), 1–14. https://doi.org/10.1371/journal.pone.0208787

Have, M., Nielsen, J. H., Gejl, A. K., Thomsen Ernst, M., Fredens, K., Støckel, J. T., Wedderkopp, N., Domazet, S. L., Gudex, C., Grøntved, A., & Kristensen, P. L. (2016). Rationale and design of a randomized controlled trial examining the effect of classroom-based physical activity on math achievement. BMC Public Health, 16(1), 1–11. https://doi.org/10.1186/s12889-016-2971-7

Hecht, M. F., & Garber, C. E. (2021). Effectiveness of the POWER Program in Improving Physical Activity and Executive Function in Fifth Grade Students. The Journal of school health, 91(7), 574–583. https://doi.org/10.1111/josh.13035

Heshmat, R., Larijani, F. A., Pourabbasi, A., & Pourabbasi, A. (2014). Do overweight students have lower academic performance than their classmates? A pilot cross sectional study in a middle school in Tehran. Journal of Diabetes and Metabolic Disorders, 13(1), 1–5. https://doi.org/10.1186/s40200-014-0087-0

Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic Fitness and Cognitive Development: Event-Related Brain Potential and Task Performance Indices of Executive Control in Preadolescent Children. Developmental Psychology, 45(1), 114. https://doi.org/10.1037/a0014437

Howie, E. K., & Pate, R. R. (2012). Physical activity and academic achievement in children: A historical perspective. Journal of Sport and Health Science, 1(3), 160–169. https://doi.org/10.1016/j.jshs.2012.09.003

Howie, E. K., Schatz, J., & Pate, R. R. (2015). Acute Effects of Classroom Exercise Breaks on Executive Function and Math Performance: A Dose-Response Study. Research Quarterly for Exercise and Sport, 86(3), 217–224. https://doi.org/10.1080/02701367.2015.1039892

Inoue, K., Okamoto, M., Shibato, J., Chul Lee, M., Matsui, T., Rakwal, R., & Soya, H. (2015): Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus. Plos One, 10 (6), e0128720 https://doi.org/10.1371/journal.pone.0133089

Jacob, R., & Parkinson, J. (2015). The Potential for School-Based Interventions That Target Executive Function to Improve Academic Achievement: A Review. Review of Educational Research, 85(4), 512–552. https://doi.org/10.3102/0034654314561338

Kvalø, S. E., Dyrstad, S. M., Bru, E., & BrØnnick, K. (2019). Relationship between aerobic fitness and academic performance: The mediational role of executive function. Journal of Sports Medicine and Physical Fitness, 59(8), 1397–1404. https://doi.org/10.23736/S0022-4707.18.08971-5

Layne, T., Yli-Piipari, S., & Knox, T. (2020). Physical activity break program to improve elementary students’ executive function and mathematics performance. Education, 49(5), 583-591. https://doi.org/10.1080/03004279.2020.1746820

Martínez-López, E. J., Ruiz-Ariza, A., Torre-Cruz, M. D. L., & Suárez-Manzano, S. (2020). Alternatives of Physical Activity within School Times and Effects on Cognition. A Systematic Review and Educational Practical Guide. Psicología Educativa, 27(1), 37 - 50. https://doi.org/10.5093/psed2020a16

Migueles, J. H., Martinez-Nicolas, A., Cadenas-Sanchez, C., Esteban-Cornejo, I., Muntaner-Mas, A., Mora-Gonzalez, J., Rodriguez-Ayllon, M., Madrid, J. A., Rol, M. A., Hillman, C. H., Catena, A., & Ortega, F. B. (2020). Activity-rest circadian pattern and academic achievement, executive function, and intelligence in children with obesity. Scandinavian Journal of Medicine and Science in Sports, 31(3), 653-664. https://doi.org/10.1111/sms.13862

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734

Morris, J. L., Daly-Smith, A., Archbold, V. S., Wilkins, E. L., & McKenna, J. (2019). The Daily MileTM initiative: Exploring physical activity and the acute effects on executive function and academic performance in primary school children. Psychology of Sport and Exercise, 45, 101583. https://doi.org/10.1016/j.psychsport.2019.101583

Morrow, J. R., Jr, Tucker, J. S., Jackson, A. W., Martin, S. B., Greenleaf, C. A., & Petrie, T. A. (2013). Meeting physical activity guidelines and health-related fitness in youth. American journal of preventive medicine, 44(5), 439–444. https://doi.org/10.1016/j.amepre.2013.01.008

Muntaner-Mas, A., Vidal-Conti, J., Salmon, J., & Palou-Sampol, P. (2020). Associations of heart rate measures during physical education with academic performance and executive function in children: A cross-sectional study. International Journal of Environmental Research and Public Health, 17(12), 1–12. https://doi.org/10.3390/ijerph17124307

Must, A., & Tybor, D. J. (2005). Physical activity and sedentary behavior: A review of longitudinal studies of weight and adiposity in youth. International Journal of Obesity, 29, S84–S96. https://doi.org/10.1038/sj.ijo.0803064

Nieto-López, M., Sánchez-López, M., Visier-Alfonso, M. E., Martínez-Vizcaíno, V., Jiménez-López, E., & Álvarez-Bueno, C. (2020). Relationship between physical fitness and executive function variables in a preschool sample. Pediatric Research, 88(4), 623–628. https://doi.org/10.1038/s41390-020-0791-z

Nokia, M. S., Lensu, S., Ahtiainen, J. P., Johansson, P. P., Koch, L. G., Britton, S. L., & Kainulainen, H. (2016). Physical exercise increases adult hippocampal neurogenesis in male rats provided it is aerobic and sustained. The Journal of physiology, 594(7), 1855–1873. https://doi.org/10.1113/JP271552

Núñez, J. L., Mahbubani, L., Huéscar, E., & León, J. (2019). Relationships between cardiorespiratory fitness, inhibition, and math fluency: A cluster analysis. Journal of Sports Sciences, 37(23), 2660–2666. https://doi.org/10.1080/02640414.2019.1654594

Oberer, N., Gashaj, V., & Roebers, C. M. (2018). Executive functions, visual-motor coordination, physical fitness and academic achievement: Longitudinal relations in typically developing children. Human Movement Science, 58, 69–79. https://doi.org/10.1016/j.humov.2018.01.003

Okamoto, M., Yamamura, Y., Liu, Y.F., Min Chul, L., Matsui, T., Shima, T., Soya, M., Takahashi, K., Soya, S., McEwen, B.S., Soya, H. (2015). Hormetic effects by exercise on hippocampal neurogenesis with glucocorticoid signaling. Brain Plasticity, 1(1), 149-158. https://doi.org/10.3233/BPL-150012

Oxford English Dictionary, preparado por J. A. Simpson y E. S. C. Weiner, Nueva York: Oxford University Press, 2017, en línea

Parsons, S., & Bynner, J. (2005). Does Numeracy Matter More? National Research and Development Centre for Adult Literacy and Numeracy.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, 71. https://doi.org/10.1136/bmj.n71

Pesce, C., Crova, C., Cereatti, L., Casella, R., & Bellucci, M. (2009). Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity, 2, 16–22. https://doi.org/10.1016/j.MApa.2009.02.001

Pozuelo-Carrascosa, D. P., García-Hermoso, A., Álvarez-Bueno, C., Sánchez-López, M., & Martinez-Vizcaino, V. (2018). Effectiveness of school-based physical activity programmes on cardiorespiratory fitness in children: a meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 52(19), 1234–1240. https://doi.org/10.1136/bjsports-2017-097600

Radak, Z., Chung, H. Y., Koltai, E., Taylor, A. W., & Goto, S. (2008). Exercise, oxidative stress and hormesis. Ageing Research Reviews, 7(1), 34–42. https://doi.org/10.1016/j.arr.2007.04.004

Reed, D. A., Cook, D. A., Beckman, T. J., Levine, R. B., Kern, D. E., & Wright, S. M. (2007). Association between funding and quality of published medical education research. JAMA, 298(9), 1002–1009 https://doi.org/10.1001/jama.298.9.1002

Rockwood, N. J., & Hayes, A. F. (2020). Mediation, moderation, and conditional process analysis: Regression-based approaches for clinical research. In A. G. Wright & M.N. Hallquist (Eds), The Cambridge handbook of research methods in clinical psychology (p. 396-414). Cambridge University Press.

Sallis, J. F., Taylor, W. C., Prochaska, J. J., Hill, J. O., & Geraci, J. C. (1999). Correlates of physical activity in a national sample of girls and boys in grades 4 through 12. Health Psychology, 18(4), 410–415. https://doi.org/10.1037/0278-6133.18.4.410

Sember, V., Jurak, G., Kovač, M., Morrison, S. A., & Starc, G. (2020). Children's Physical Activity, Academic Performance, and Cognitive Functioning: A Systematic Review and Meta-Analysis. Frontiers in public health, 8, 307. https://doi.org/10.3389/fpubh.2020.00307

Singh, A. S., Saliasi, E., Berg, V. van den, Uijtdewilligen, L., Groot, R. H. M. de, Jolles, J., Andersen, L. B., Bailey, R., Chang, Y.-K., Diamond, A., Ericsson, I., Etnier, J. L., Fedewa, A. L., Hillman, C. H., McMorris, T., Pesce, C., Pühse, U., Tomporowski, P. D., & Chinapaw, M. J. M. (2019). Effects of physical activity interventions on cognitive and academic performance in children and adolescents: a novel combination of a systematic review and recommendations from an expert panel. British Journal of Sports Medicine, 53(10), 640-647. https://doi.org/10.1136/bjsports-2017-098136

Schmidt, M., Egger, F., Benzing, V., Jäger, K., Conzelmann, A., Roebers, C. M., & Pesce, C. (2017). Disentangling the relationship between children’s motor ability, executive function and academic achievement. PLoS ONE, 12(8). https://doi.org/10.1371/journal.pone.0182845

St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59(4), 745–759. https://doi.org/10.1080/17470210500162854

Suárez-Manzano, S., Ruiz-Ariza, A., López-Serrano, S., & Martínez López, E. J. (2018). Physical activity and attention in schoolchildren diagnosed with ADHD: a review of longitudinal studies. Innovación Educativa, 28, 139-152. https://doi.org/10.15304/ie.28.4571

Tomporowski, P. D., McCullick, B. A., & Horvat, M. (2010). Role of contextual interference and mental engagement on learning. Nova Science Publishers, Incorporated.

Tomporowski, Philip D., Davis, C. L., Lambourne, K., Gregoski, M., & Tkacz, J. (2008). Task switching in overweight children: Effects of acute exercise and age. Journal of Sport and Exercise Psychology, 30(5), 497–511. https://doi.org/10.1123/jsep.30.5.497

Tomporowski, Phillip D., Davis, C. L., Miller, P. H., & Naglieri, J. A. (2008). Exercise and children’s intelligence, cognition, and academic achievement. Educational Psychology Review, 20(2), 111–131. https://doi.org/10.1007/s10648-007-9057-0

Trejo, J. L., & Sanfeliu, C. (2020). Cerebro y ejercicio/Brain and exercise (CSIC).

U.S. Department of Health and Human Services. (2018). Physical Activity Guidelines Advisory Committee Scientific Report. Physical activity guidelines advisory committee scientific report. https://health.gov/our-work/physical-activity/current-guidelines/scientific-report

van Waelvelde, H., vanden Wyngaert, K., Mariën, T., Baeyens, D., & Calders, P. (2020). The relation between children’s aerobic fitness and executive functions: A systematic review. Infant and Child Development, 29(3), e2163. https://doi.org/https://doi.org/10.1002/icd.2163

Van Waelvelde, H., Vanden Wyngaert, K., Mariën, T., Baeyens, D., & Calders, P. (2020). The relation between children’s aerobic fitness and executive functions: A systematic review. Infant and Child Development, 29(3), 1–30. https://doi.org/10.1002/icd.2163

Vazou, S., & Skrade, M. A. B. (2017). Intervention integrating physical activity with math: Math performance, perceived competence, and need satisfaction†. International Journal of Sport and Exercise Psychology, 15(5), 508–522. https://doi.org/10.1080/1612197X.2016.1164226

Vazou, S., & Smiley-Oyen, A. (2014). Moving and academic learning are not Antagonists: Acute effects on executive function and enjoyment. Journal of Sport and Exercise Psychology, 36(5), 474–485. https://doi.org/10.1123/jsep.2014-0035

Verburgh, L., Königs, M., Scherder, E. J. A., & Oosterlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. British Journal of Sports Medicine, 48(12), 973–979. https://doi.org/10.1136/bjsports-2012-091441

Visier-Alfonso, M. E., Sánchez-López, M., Martínez-Vizcaíno, V., Jiménez-López, E., Redondo-Tébar, A., & Nieto-López, M. (2020). Executive functions mediate the relationship between cardiorespiratory fitness and academic achievement in Spanish schoolchildren aged 8 to 11 years. PLoS ONE, 15(4), 1–15. https://doi.org/10.1371/journal.pone.0231246

Westendorp, M., Houwen, S., Hartman, E., Mombarg, R., Smith, J., & Visscher, C. (2014). Effect of a ball skill intervention on children’s ball skills and cognitive functions. Medicine and Science in Sports and Exercise, 46(2), 414–422. https://doi.org/10.1249/MSS.0b013e3182a532b3

Xue, Y., Yang, Y., & Huang, T. (2019). Effects of chronic exercise interventions on executive function among children and adolescents: a systematic review with meta-analysis. British journal of sports medicine, 53(22), 1397–1404. https://doi.org/10.1136/bjsports-2018-099825

留言 (0)

沒有登入
gif