Neto FT, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol. 2016;59:10–26.
Paronetto MP, Sette C. Role of RNA-binding proteins in mammalian spermatogenesis. Int J Androl. 2010;33:2–12.
Article CAS PubMed Google Scholar
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis evelopment. Endocr Rev. 2019;40:857–905.
Li X, Long XY, Xie YJ, Zeng X, Chen X, Mo ZC. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin Chim Acta. 2019;497:54–60.
Article CAS PubMed Google Scholar
Handel MA. Monitoring meiosis in gametogenesis. Theriogenology. 1998;49:423–30.
Article CAS PubMed Google Scholar
Ishiguro KI, Shimada R. MEIOSIN directs initiation of meiosis and subsequent meiotic prophase program during spermatogenesis. Genes Genet Syst. 2022;97:27–39.
Article CAS PubMed Google Scholar
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction. 2016;151:R43-54.
Article CAS PubMed Google Scholar
Huang Q, Chen X, Yu H, Ji L, Shi Y, Cheng X, Chen H, Yu J. Structure and molecular basis of spermatid elongation in the Drosophila testis. Open Biol. 2023;13: 230136.
Article CAS PubMed PubMed Central Google Scholar
Fabian L, Brill JA. Drosophila spermiogenesis: big things come from little packages. Spermatogenesis. 2012;2:197–212.
Article PubMed PubMed Central Google Scholar
Xiong Y, Yu C, Zhang Q. Ubiquitin-proteasome system-regulated protein degradation in spermatogenesis. Cells. 2022;11:1058.
Article CAS PubMed PubMed Central Google Scholar
Li Y, Li S, Wu H. Ubiquitination-Proteasome System (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells. 2022;11:851.
Article CAS PubMed PubMed Central Google Scholar
Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009;37:937–53.
Article CAS PubMed Google Scholar
Song L, Luo ZQ. Post-translational regulation of ubiquitin signaling. J Cell Biol. 2019;218:1776–86.
Article CAS PubMed PubMed Central Google Scholar
Dai X, Zhang T, Hua D. Ubiquitination and SUMOylation: protein homeostasis control over cancer. Epigenomics. 2022;14:43–58.
Article CAS PubMed Google Scholar
Mattiroli F, Penengo L. Histone ubiquitination: an integrative signaling platform in genome tability. Trends Genet. 2021;37:566–81.
Article CAS PubMed Google Scholar
Carroll EC, Marqusee S. Site-specific ubiquitination: deconstructing the degradation tag. Curr Opin Struct Biol. 2022;73: 102345.
Article CAS PubMed PubMed Central Google Scholar
Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol. 2011;12:295–307.
Article CAS PubMed PubMed Central Google Scholar
Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.
Article CAS PubMed Google Scholar
Liu W, Tang X, Qi X, Fu X, Ghimire S, Ma R, Li S, Zhang N, Si H. The Ubiquitin conjugating enzyme: an important ubiquitin transfer platform in Ubiquitin-Proteasome system. Int J Mol Sci. 2020;21(8):2894. https://doi.org/10.3390/ijms21082894.
Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022;23:715–31.
Article CAS PubMed Google Scholar
Yau TY, Sander W, Eidson C, Courey AJ. SUMO interacting motifs: structure and function. Cells. 2021;10(11):2825. https://doi.org/10.3390/cells10112825.
Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol. 2009;10:659–71.
Article CAS PubMed PubMed Central Google Scholar
van Wijk SJ, Timmers HT. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. Faseb j. 2010;24:981–93.
Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol. 2009;10:755–64.
Article CAS PubMed PubMed Central Google Scholar
Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Wolberger C, Pickart CM. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. Embo j. 2003;22:5241–50.
Article CAS PubMed PubMed Central Google Scholar
Tian R, Yang C, Geng Y, Seim I, Yang G. Genomewide analysis of sperm whale E2 ubiquitin conjugating enzyme genes. J Genet 2021, 100.
Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. E2 enzymes: more than just middle men. Cell Res. 2016;26:423–40.
Article CAS PubMed PubMed Central Google Scholar
Ho NPY, Leung CON, Wong TL, Lau EYT, Lei MML, Mok EHK, Leung HW, Tong M, Ng IOL, Yun JP, et al. The interplay of UBE2T and mule in regulating Wnt/β-catenin activation to promote hepatocellular carcinoma progression. Cell Death Dis. 2021;12:148.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Hong H, Wang Q, Li J, Zhang W, Chen T, Li P. NEDD4L-induced ubiquitination mediating UBE2T degradation inhibits progression of lung adenocarcinoma via PI3K-AKT signaling. Cancer Cell Int. 2021;21:631.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Wang J, Wu J, Huang J, Lin Z, Lin X. UBE2T regulates FANCI monoubiquitination to promote NSCLC progression by activating EMT. Oncol Rep. 2022;48(2):139. https://doi.org/10.3892/or.2022.8350.
Jiang X, Ma Y, Wang T, Zhou H, Wang K, Shi W, Qin L, Guan J, Li L, Long B, et al. Targeting UBE2T potentiates gemcitabine efficacy in pancreatic cancer by regulating pyrimidine metabolism and replication stress. Gastroenterology. 2023;164:1232–47.
Article CAS PubMed Google Scholar
Sun J, Zhu Z, Li W, Shen M, Cao C, Sun Q, Guo Z, Liu L, Wu D. UBE2T-regulated H2AX monoubiquitination induces hepatocellular carcinoma radioresistance by facilitating CHK1 activation. J Exp Clin Cancer Res. 2020;39:222.
Article PubMed PubMed Central Google Scholar
Liu LL, Zhu JM, Yu XN, Zhu HR, Shi X, Bilegsaikhan E, Guo HY, Wu J, Shen XZ. UBE2T promotes proliferation via G2/M checkpoint in hepatocellular carcinoma. Cancer Manag Res. 2019;11:8359–70.
留言 (0)