Reshaping the tumor immune microenvironment to improve CAR-T cell-based cancer immunotherapy

Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nature reviews. Clin Oncol. 2016;13(1):25–40.

CAS  Google Scholar 

Montironi C, Muñoz-Pinedo C, Eldering E. Hematopoietic versus solid cancers and T cell dysfunction: looking for similarities and distinctions. Cancers (Basel). 2021;13(2):284.

Article  PubMed  CAS  Google Scholar 

Frey NV, Porter DL. CAR T-cells merge into the fast lane of cancer care. Am J Hematol. 2016;91(1):146–50.

Article  PubMed  CAS  Google Scholar 

Jena B, Moyes JS, Huls H, Cooper LJN. Driving CAR-Based T-Cell therapy to Success. Curr Hematol Malig Rep. 2014;9(1):50–6.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Z, Wang T, Wang X, Zhang Y, Song S, Ma C. Improving the ability of CAR-T cells to hit solid tumors: challenges and strategies. Pharmacol Res. 2022;175:106036.

Article  PubMed  CAS  Google Scholar 

Majzner RG, Heitzeneder S, Mackall CL. Harnessing the Immunotherapy Revolution for the treatment of Childhood Cancers. Cancer Cell. 2017;31(4):476–85.

Article  PubMed  CAS  Google Scholar 

Majzner RG, Mackall CL. Tumor Antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219–26.

Article  PubMed  CAS  Google Scholar 

Mangal JL, Handlos JL, Esrafili A, Inamdar S, Mcmillian S, Wankhede M, Gottardi R, Acharya AP. Engineering Metabolism of Chimeric Antigen Receptor (CAR) cells for developing efficient immunotherapies. Cancers (Basel). 2021;13(5):1123.

Article  PubMed  CAS  Google Scholar 

Frigault MJ, Lee J, Basil MC, Carpenito C, Motohashi S, Scholler J, Kawalekar OU, Guedan S, Mcgettigan SE, Posey AJ, et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol Res. 2015;3(4):356–67.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, Mehta A, Purev E, Maloney DG, Andreadis C, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52.

Article  PubMed  Google Scholar 

Nastoupil LJ, Jain MD, Feng L, Spiegel JY, Ghobadi A, Lin Y, Dahiya S, Lunning M, Lekakis L, Reagan P, et al. Standard-of-care Axicabtagene Ciloleucel for relapsed or refractory large B-Cell lymphoma: results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119–28.

Article  PubMed  PubMed Central  Google Scholar 

Schultz LM, Baggott C, Prabhu S, Pacenta HL, Phillips CL, Rossoff J, Stefanski HE, Talano JA, Moskop A, Margossian SP, et al. Disease Burden affects outcomes in Pediatric and Young Adult B-Cell Lymphoblastic Leukemia after Commercial Tisagenlecleucel: a Pediatric Real-World chimeric Antigen receptor Consortium Report. J Clin Oncol. 2022;40(9):945–55.

Article  PubMed  CAS  Google Scholar 

Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, Shao ZM. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 2021;14(1):98.

Article  PubMed  PubMed Central  Google Scholar 

Saleh K, Cheminant M, Chiron D, Burroni B, Ribrag V, Sarkozy C. Tumor Microenvironment and Immunotherapy-based approaches in Mantle Cell Lymphoma. Cancers (Basel). 2022;14(13):3229.

Article  PubMed  CAS  Google Scholar 

Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet (London England). 2007;370:59–67.

Article  PubMed  Google Scholar 

Willimsky G, Blankenstein T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 2005;437:141–6.

Article  PubMed  CAS  Google Scholar 

Ciampricotti M, Vrijland K, Hau C, Pemovska T, Doornebal CW, Speksnijder EN, Wartha K, Jonkers J, de Visser KE. Development of metastatic HER2 + breast cancer is independent of the adaptive immune system. J Pathol. 2011;224(1):56–66.

Article  PubMed  CAS  Google Scholar 

Mascaux C, Angelova M, Vasaturo A, Beane J, Hijazi K, Anthoine G, Buttard B, Rothe F, Willard-Gallo K, Haller A, et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature. 2019;571(7766):570–5.

Article  PubMed  CAS  Google Scholar 

Pylaeva E, Korschunow G, Spyra I, Bordbari S, Siakaeva E, Ozel I, Domnich M, Squire A, Hasenberg A, Thangavelu K, et al. During early stages of cancer, neutrophils initiate anti-tumor immune responses in tumor-draining lymph nodes. Cell Rep. 2022;40(7):111171.

Article  PubMed  CAS  Google Scholar 

Pan X, Zheng L. Epigenetics in modulating immune functions of stromal and immune cells in the tumor microenvironment. Cell Mol Immunol. 2020;17(9):940–53.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science. 2017;357(6348).

Kehrberg RJ, Bhyravbhatla N, Batra SK, Kumar S. Epigenetic regulation of cancer-associated fibroblast heterogeneity. Biochim Biophys Acta Rev Cancer. 2023;1878(3):188901.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Davidov V, Jensen G, Mai S, Chen S, Pan P. Analyzing one cell at a TIME: analysis of myeloid cell contributions in the Tumor Immune Microenvironment. Front Immunol. 2020;11:1842.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhong F, Lin Y, Zhao L, Yang C, Ye Y, Shen Z. Reshaping the tumour immune microenvironment in solid tumours via tumour cell and immune cell DNA methylation: from mechanisms to therapeutics. Br J Cancer. 2023;129(1):24–37.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang Y, He M, Wang Y, Liao A. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front Immunol. 2017;8:120.

PubMed  PubMed Central  Google Scholar 

Tymoszuk P, Evens H, Marzola V, Wachowicz K, Wasmer MH, Datta S, Muller-Holzner E, Fiegl H, Bock G, van Rooijen N, et al. In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors. Eur J Immunol. 2014;44(8):2247–62.

Article  PubMed  CAS  Google Scholar 

Lio CJ, Rao A. TET enzymes and 5hmC in adaptive and innate Immune systems. Front Immunol. 2019;10:210.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Morales-Nebreda L, Mclafferty FS, Singer BD. DNA methylation as a transcriptional regulator of the immune system. Transl Res. 2019;204:1–18.

Article  PubMed  CAS  Google Scholar 

Calle-Fabregat CDL, Morante-Palacios O, Ballestar E. Understanding the relevance of DNA methylation changes in Immune differentiation and disease. Genes (Basel). 2020;11(1):110.

Article  PubMed  Google Scholar 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80.

留言 (0)

沒有登入
gif